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ABSTRACT

The co-evolution of morphology and control for virtual crea-
tures enables the creation of a novel form of gameplay and
procedural content generation. Starting with a creature
evolved to perform a simple task such as locomotion and
removing its brain, the remaining body can be employed in
a compelling interactive control problem. Just as we en-
joy the challenge and reward of mastering helicopter °ight
or learning to play a musical instrument, learning to con-
trol such a creature through manual activation of its actu-
ators presents an engaging and rewarding puzzle. Impor-
tantly, the novelty of this challenge is inexhaustible, since
the evolution of virtual creatures provides a way to proce-
durally generate content for such a game. An endless series
of creatures can be evolved for a task, then have their brains
removed to become the game's next human-control chal-
lenge. To demonstrate this new form of gameplay and con-
tent generation, a proof-of-concept game|tentatively titled
Darwin's Avatars |was implemented using evolved creature
content, and user tested. This implementation also provided
a unique opportunity to compare human and evolved control
of evolved virtual creatures, both qualitatively and quanti-
tatively, with interesting implications for improvements and
future work.

Categories and Subject Descriptors

1.2.6 [Articial Intelligence ]: Learning| connectionism
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Graphics ]: Three-Dimensional Graphics and Realism| an-
imation
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(a) User view of the game.

(b) Volunteers playtesting the human vs. human
version of the game.

Figure 1: Proof-of-concept game implementation. See video
at http://youtu.be/p42wPQ3FYLU .

1. INTRODUCTION

This paper describes a new form of gameplay and a corre-
sponding method of procedural content generation [17, [19,
5] which are made possible by evolutionary computation.
The fundamental gameplay mechanism is a complex non-
intuitive problem: How to control a physically simulated
three-dimensional creature by manually activating its mus-
cles.

The core content of the game|the creature to be controlled|
is generated procedurally using a muscle-driven evolved vir-
tual creature (EVC) system like the one described in Lessin
et al. [6]. Due to this close coupling between the core game-
play mechanics (learning to control an unfamiliar creature)
and the associated method for procedural content generation


http://dx.doi.org/10.1145/2739480.2754749
http://youtu.be/p42wPQ3FYLU

(evolving virtual creatures), the game's entertainment value
is inherently vibrant, novel, and open ended. The imple-
mentation, mechanics, and procedural generation of content
for the game|referred to here as Darwin's Avatars |are de-
scribed in Section 3.

An additional benet of this game system is that it per-
mits the co-evolved controllers for these creature bodies to
be compared to human control techniques. By seeing the
ways in which human and evolved controllers di®er (both
in strategy and ability), we may be able to produce better
evolved controllers. In Section 5, the results of such a com-
parison (both quantitative and qualitative) are presented,
using data collected across multiple trials, users, and crea-
tures. Useful implications of these comparisons are discussed
in Section 6.

2. BACKGROUND

Before the presentation of the new system, relevant related
work{both in terms of implementation and gameplay{will be
described in this section.

2.1 EVC System

The EVC method at the heart of this new system of game-
play and content generation is an adaptation of Sims' origi-
nal work [16], with a few small changes as well as some novel
features. That method is described next.

Evolutionary Algorithm

A conventional evolutionary algorithm is used, with elitism,

“tness-proportionate selection, and rank selection [8]. In
addition, the most challenging tasks employ shaping [20,
3]. Fitness is evaluated in a physically simulated virtual
environment implemented with NVIDIA PhysX [10].

Morphology

As in Sims' original work, creature morphology is described
by a graph-based genotype, with graph nodes representing
body segments, and graph edges representing joints between
segments (Figure 2). By starting at the root and travers-
ing the graph's edges, the phenotype is expressed. Re°exive
edges as well as multiple edges between the same node pair
are allowed, making it possible to de ne recursive and re-
peated body substructures easily. In addition, as in Sims'
work, body symmetry is made readily available to evolu-
tion, with only a single mutation required to produce it. In
this implementation, all PhysX primitives are available for
use as body segments: boxes, spheres, and capsules. Joints
between segments may be of most of the types o®ered by
PhysX, speci cally: "xed, revolute, spherical, prismatic, and
cylindrical. In contrast to the typical technique of separately
evolving explicit joint limits, most limitations on joint move-
ment are provided implicitly by creature structure through
natural collisions between adjacent segments.

In addition to the typical segments and joints, the imple-
mentation of the underlying EVC system also evolves muscle
drives, described next.

Muscles

In a break with traditional evolved virtual creature systems,
which typically use forces exerted directly at joints, the un-
derlying EVC system of this paper uses simulated muscles as
actuators [7]. Muscles are rendered as lines (as seen in Fig-
ures 4-6), with color from white to red indicating the degree

(a) Simple topology.

(b) Multiple edges for repeated substructures.

(c) Re’exive edge for recursive structure.

(d) Multiple and re°exive edges together.

(e) Multiple re°exive edges.

Figure 2: Hand-designed genotype/phenotype pairs (after
those of Sims [16]) demonstrate the encoding power of EVC
systems like the one employed in this paper.

of activation, from zero to full, respectively. Each muscle
is de ned by two attachment points on adjacent segments,
along with a maximum strength value. In simulation, the
muscle is implemented as a spring, with muscle activation
modifying the spring constant. In addition to acting as an
e®ector, each muscle also produces a proprioceptive feed-
back signal based on its current length. For each muscle,
two nodes are added to the brain: one that accepts an input
to set the muscle's activation, and another that makes the
muscle's proprioceptive output signal available to the rest of
the brain.

Control

In a manner which is again very similar to that of Sims,
creature control is provided by a brain composed of a set
of nodes connected by wires (as in Figure 3). Nodes receive
varying numbers of input wires, and use their inputs to com-
pute an output value (always in the range [0,1]) which may
be sent to other wires. Signals originate from sensors in the



body as well as certain types of internal brain nodes, travel
through the network of internal nodes and wires, and ulti-
mately control the operation of actuators (muscles) in the
physically simulated body. For each step of physical simu-
lation, control signals move one step through the brain.

proprio-
ceptor

proprio-
ceptor

proprio-
ceptor

sinusoidal

frequency: 1.97337
phase: 0.835238
amplitude: 1

muscle muscle muscle
target: 1:0 target: 0:0 target: 0:1

Figure 3: An EVC control network, co-evolved with a body
for locomotion.

In addition to the special node types for muscles and their
associated proprioceptors (described above), the following
node types are allowed: sinusoidal, complement, constant,
scale, multiply, divide, sum, di®erence, derivative, threshol d,
switch, delay, and absolute di®erence.

2.2 Related Work

The gameplay presented here, while novel, is not without
precedent. The most obvious and closely related example is
Bennett Foddy's online game QWOP ! [2]. In QWOP, the
user is presented with a two-dimensional physically simu-
lated human runner whose muscles are controlled by pressing
Q, W, O, and P on the keyboard. This work is useful in that
it demonstrates the viability of gameplay which uses man-
ual keyboard control of physically simulated muscles. The
primary di®erence between the new system and QWOP is
that this new control challenge is deeper and open ended,
since it takes place in an unlimited supply of novel creatures
produced through evolution. In addition, this evolutionary
process provides viable automatic control systems for the
creatures, making them available as competitors or teaching
models.

Also of note, Incredipede® demonstrates the rewarding
gameplay challenge of non-intuitive creature control (again
in 2-D), although in this case, morphology can vary. This
variability of body and control are at the heart of that
game's entertainment value, serving to demonstrate the worth
of the same gameplay challenge in the new system pre-
sented here. In Incredipede, however, morphological novelty
is added by the player through a manual creature construc-
tion process, in contrast to the automated mechanism of
procedural content generation described in this paper.

Yhttp:/iwww.foddy.net/Athletics.html
2http:/iwww.incredipede.com

With respect to human vs. evolved control of physically
simulated creatures, QWOP was recently the subject of such
a comparison [12]. While not yet able to compete with hu-
man QWOP champions [11], their system is described by
the authors as the "rst autonomous evolution of successful
QWOP gaits.

When applied to games, procedural content generation
(PCG) allows game elements (e.g. maps, textures, items,
quests, etc.) to be generated algorithmically rather than
through direct human design [19, 5]. This approach can re-
duce design costs and can also bene't players by providing
them unique experiences every time they play. In partic-
ular, evolutionary computation and other search-based ap-
proaches [19] can enable the design of new content outside
the scope of a xed space of rules.

An example of PCG applied to video games is Galactic
Arms Race (GAR [4]), in which weapons are evolved auto-
matically based on user behavior. Further examples include
Avery et al. [1], who evolved several aspects of a tower de-
fense game, Shaker et al. [15] who evolved levels for the
platform game Super Mario Bros., Risi et al. [13], whose
game Petalz allows players to breed an unlimited variety of
virtual °owers, and Togelius et al. [18], who experimented
with evolving the rules of the game itself.

While the potential of PCG in competitive gaming is now
well established [4, 9, 14], this paper presents the rst exam-
ple of PCG-generated EVCs for game content. The promise
of this new approach is that it could supply a novel and
unlimited stream of interesting creatures for the player to
master.

3. THE GAME: DARWIN'S AVATARS

This paper's primary contribution is a hew and powerful
combination of gameplay and content generation. The fun-
damental challenge of the game is to manually control the
muscles of a novel creature to achieve a certain task. In this
proof-of-concept implementation, the challenge is a race, ei-
ther against another human user, or against an evolved con-
troller.

In this section, this system is presented in detail. First,
the game's method of procedural content generation is de-
scribed. Second, the mechanics of the game implementation
are presented. Finally, the results of a human vs. human
playtesting trial of the game are given.

3.1 Procedural Generation of Game Content

The game described above derives its entertainment value
from the user's mastery of an unfamiliar control problem. In
other games (e.g., QWOP and Incredipede) this challenging
unfamiliarity is either "xed or the result of a user-controlled
construction process. In contrast, this new game's corre-
sponding procedural content generation is both open-ended
and automatic, providing the user with an essentially inex-
haustible source for the challenge at the heart of its game-
play.

To produce novel creatures for the user to control, an EVC
system (Section 2.1) is run, with "tness corresponding to
what will be the user's goal during gameplay. In the game
described in this paper, for example, the creatures are the
result of evolution for a locomotion task. Typically, ten runs
might be started in parallel (with di®erent random seeds),
each with population size 100. These might evolve for 500
generations, with the winner from each run examined for



both "tness success and aesthetic suitability. Approximately
half of these runs might be expected to yield useful results.
Because the body is co-evolved with a successful control
mechanism, two important aims are achieved: First, it is
demonstrated that useful control of the evolved body is pos-
sible. If the body were merely evolved on its own, creatures
might result which had no possibility of successful control.
Second, the existence of an evolved control system for each
creature makes a non-player character available, enabling a
single user to compete against|or learn by example from|
the evolved brain.

3.2 Game Mechanics

Drawing upon the bodies evolved as described in Sec-
tion 3.1, users are presented with three creatures, each with a
di®erent body plan, muscle structure, and likely locomotion
style. The “rst creature (Figure 4) has three muscles, and
typically moves by raising and lowering its heavy front limb
to generate a fast jumping gait. The second creature (Fig-
ure 5) has four muscles controlling sphere limbs in a body
which is symmetrical from front to back. This creature is
more challenging to control, as its body makes it as easy
to move backward as it is to move forward. It is also pos-
sible to tip over with this creature's morphology, although
recovery seems always to be possible. The third creature
(Figure 6) has the most complex body, with seven segments
and six muscles, which are typically used in a familiar (and
slower-paced) quadrupedal gait.

Figure 4: Creature type A: two segments, three muscles.

Figure 5: Creature type B: three segments, four muscles.

Once the creature is selected, the user is presented with
the set of keys which will control their character. These keys
are selected in a xed yet essentially arbitrary order, with

Figure 6: Creature type C: seven segments, six muscles.

multiple players having a matching pattern of keys in the
right and left halves of the keyboard. This non-intentional
ordering of muscles and keys is appropriate to the fundamen-
tal gameplay challenge of learning a non-intuitive interface
to creature control, and it may also be required if the game
is to take advantage of the open-ended generation of content
provided by the EVC system. Keys control muscle activa-
tion directly, with a key being up or down at any point in
time corresponding to zero or full activation of a muscle, re-
spectively. Keys controlling muscles function independently ,
allowing them to be activated in arbitrary overlapping pat-
terns.

Two copies of the chosen creature are presented in a side-
by-side pair of tracks (Figure 1a), with one creature con-
trolled by player 1, and the other controlled by either player
2 or the creature's original evolved brain, as selected by
the user. In this implementation, the tracks were straight,
and creatures were prevented from leaving them by invisible
physically simulated walls.

At a key press, the start timer counts down to zero, and
the race begins. Time and distance are tracked for each
creature, until both creatures have reached the end of the
tracks or the time limit is reached. The time limits (10,
15, and 20 seconds for creatures A, B, and C, respectively)
are based on the evolved controller's known speed for the
current creature, with approximately double that time used
as a limit in this implementation. When the race ends, each
player's speed is presented. Speed is computed as positive
or negative distance covered from the start point, divided
by time to reach the end of the track (or the limit time, if
the end of the track was not reached).

4. HUMAN VS. HUMAN USER
EXPERIENCE

In preliminary human-vs.-human playtesting (four users,
“ve matches with each of the three creatures, in the order A,
B, C), the value of the proposed gameplay mechanics appear
to have been validated. While some users may nd direct
competition against an evolved brain discouraging due to
the mismatch in speed (see Section 5.2), most appear to en-
joy the human-versus-human version of the game. As would
be expected, such a one-on-one competition tends to reduce
frustration, providing real hope for success as long as both
players are at a similar level. For example, in the sequence
of contests shown in Figure 7, the players are close enough
in skill that user 012, while worse on average, is still within



reach of user 011's speed, even surpassing it in the fourth
run. During testing, many players displayed great curios-

ity about their scores and relative rankings, suggesting an

interest in performance, accomplishment, and competition

that bodes well for a motivated and rewarding gameplay

experience.

Figure 7: A competitive sequence of "ve runs of human vs.
human competition using the A-type creature.

Also of note, there is evidence for an increase in skill with
practice, even over as little as the "ve runs allowed for each
creature type during playtesting. Table 1 illustrates the
change in mean speed between the rst and fth run for
each creature, using data collected as described in Section 5.
While only creature type C's increase is statistically signif-
icant (p < 0.01, using two-tailed, paired t-test), all three
types show an increase in the mean that is at least sugges-
tive.

Creature | Runl | Runl | Run5 | Run5 p
Type Mean SD Mean SD
A 0.4121| 0.1651| 0.6023 | 0.2986 | 0.1591
B 0.1988| 0.1293| 0.2424 | 0.0711| 0.3930
C 0.1818 | 0.0543| 0.3049 | 0.1265 | 0.0088

Table 1: Change in mean speed for each creature type be-
tween “rst and last run of playtesting, along with standard
deviations and p (computed using a two-tailed, paired t-
test).

This type of learning and accomplishment provides the
player with satisfaction, increasing the player's enjoyment
and the game's viability. And note that this core aspect of
the game's entertainment value|the challenge and satisfac-
tion of improving at a novel control task|is exactly what
is extended by the game's corresponding procedural content
generation solution.

5. HUMAN VS. EVOLVED-CONTROL
RESULTS

In addition to producing the coupled game mechanics and
content generation described above, the manual control of

muscles in evolved virtual creatures provides a new way
to compare human and evolved control of EVCs. In this
section, both qualitative di®erences in control strategy and
quantitative di®erences in resulting speed are presented.

These results are derived from single-player user tests by
seven volunteers. In each user test, ve runs were performed
for each of the three creature types (rst A, then B, then
C), with both "nal speed and muscle-activation patterns
recorded for each run.

5.1 Qualitative Comparison

For qualitative comparison of human and evolved con-
trollers, patterns of recorded muscle activation are com-
pared. A useful way to present such patterns is as a variation
on a spectrogram, with each row corresponding to a single
muscle's activation over time. In Figures 8-10, a spectro-
gram for the nal user run of each creature type is presented
(in green), along with a spectrogram from that creature's
evolved controller (in red).

(a) evolved (2.1738 m/s) (b) user 001 (0.8868 m/s)

(c) user 002 (0.6147 m/s) (d) user 003 (1.1146 m/s)

(e) user 004 (0.3311 m/s) (f) user 005 (0.5429 m/s)

(g) user 006 (0.3565 m/s) (h) user 008 (0.3697 m/s)

Figure 8: Creature type A: muscle-activation spectrograms,
with corresponding speeds.

For the A-type creature (Figure 8), human control strate-
gies are similar to that of the evolved controller. Users tend
to employ the same two muscles as the evolved controller,
and many also replicate its simple alternating pattern, as
well. The user pattern most similar to the evolved solution
(Figure 8d) was also the fastest human example for that run
(1.1146 m/s), although still far from the evolved controller's
mean for that creature (2.3281 m/s). Beyond di®erences
in control technique, another reason for lower human scores



which is indicated in these spectrograms is that many users
do not begin activating muscles until a fraction of a sec-
ond after the run begins, while the evolved controllers start
without any delay.

(a) evolved (1.1076 m/s) (b) user 001 (0.2840 m/s)

(c) user 002 (0.2712 m/s) (d) user 003 (0.2796 m/s)

(e) user 004 (0.3340 m/s) (f) user 005 (0.1249 m/s)

(g) user 006 (0.1804 m/s) (h) user 008 (0.2230 m/s)
Figure 9: Creature type B: muscle-activation spectrograms,
with corresponding speeds.

For the B-type creature (Figure 9), most human activation
patterns di®er signi cantly, both from each other and from
the evolved controller, and none are particularly successful
compared to the evolved solution. Although its importance
is not proven, this evolved controller makes the most ob-
vious use of continuous activation values|something not
available to a human user through the keyboard interface
(as discussed in Section 6). This may be one reason why
human users "nd this creature particularly challenging. An-
other ditcult aspect of controlling this creature originates
in its morphology: Because its body is symmetrical from
front to back, it just as easy for it to move backwards as
forwards, with some users even achieving a negative speed
during evaluation runs.

For the C-type creature (Figure 10), there is again great
variety in timing and muscles used, both among human and
evolved results. In this creature, however, human control has
“nally begun to compete with evolved control. Interestingly
for this creature, the human control pattern most visually
similar to the evolved one (Figure 10b, 0.2983 m/s) is not
nearly the fastest. Instead, it is the pattern of Figure 10c,
using very di®erent muscles and timing from the evolved

(a) evolved (0.4810 m/s) (b) user 001 (0.2983 m/s)

(c) user 002 (0.5606 m/s) (d) user 003 (0.3512 m/s)

(e) user 004 (0.2012 m/s) (f) user 005 (0.1890 m/s)

(g) user 006 (0.2403 m/s) (h) user 008 (0.2938 m/s)
Figure 10: Creature type C: muscle-activation spectrograms,
with corresponding speeds.

solution, which scores best, reaching 0.5606 m/s, beating
the evolved controller's mean of 0.5515 m/s.

5.2 Quantitative Comparison

For quantitative comparison of human and evolved con-
trol of EVCs, the same human test data is examined with
respect to locomotive speed. Figures 11-13 illustrate human-
controlled speed vs. evolved-controller speed for each of the
three creature types. For each creature, data for seven test
subjects over “ve runs are plotted, with mean, standard de-
viation, and best result indicated for each run. For compari-
son, seven runs of the evolved creature are similarly recorded
and graphed. For each of the three creature types, evolved
controllers score better in mean and best result during every
run, but there are some important di®erences worth noting.

For creature types A and B, humans were not competi-
tive with the evolved solution throughout the recorded tri-
als. The best human score remained well below the evolved-
controller mean for all such runs. Given the limited number
of runs, however, and real-world examples of human control-
task learning (consider learning to play the piano, or com-
pete in Olympic gymnastics), it is not unreasonable to think
that a human player might be competitive with an evolved
controller, if given enough time to practice.

With creature type C, however, human performance was
much closer to evolved performance throughout, with the
best human controller once approaching the evolved-controller



Figure 11: Comparison of evolved and human controller
speeds for creature type A.

Figure 12: Comparison of evolved and human controller
speeds for creature type B.

mean, and once even exceeding it. In fact, the last run for
this type showed both the highest mean and highest best
score for human controllers, with a statistically-signi cant
indication of increasing score between the rst and last runs
for this creature (as described in Section 4 and Table 1).
With human results approaching evolved results and shown
to be still increasing, C-type creature results seem to of-
fer humanity's best hope for matching or surpassing evolved
controllers for the virtual creatures examined here.

6. DISCUSSION AND FUTURE WORK

The results of Section 5's comparison between human and
evolved controllers have some interesting implications, and
suggest potentially valuable future work. One important
observation is that humans may be able to produce usable
(although likely slower) control strategies in a signi cantly
shorter wall-clock time than evolution|on the order of min-
utes for humans versus hours or more for evolution. Another

Figure 13: Comparison of evolved and human controller
speeds for creature type C.

important observation is that human and evolved controllers
often use very di®erent techniques, with even the most com-
petitive human controller di®ering greatly in strategy from
the evolved controller for the same creature. This suggests
the potential for a productive transfer of knowledge from
human user to evolution. For example, evolved solutions
could be rewarded for their similarity to successful human
play traces, just as a teacher might instruct a student on
technique when learning a physical skill. The proper combi-
nation of human and evolved skill could potentially lead to
better solutions than either might have achieved alone, and
seems worthy of future study.

Another important topic worthy of discussion is the dif-
ference in possible activation patterns between human and
evolved controllers in the system this paper describes. As
in typical EVC systems, the evolved controllers studied here
generate continuous activation signals, while human users
are limited to a binary signal for each muscle, owing to
the keyboard interface. For human-vs.-human competition,
this limitation may be acceptable, since useful control was
shown to be possible with such discrete input, and because
both players have this constraint in common. For human-
vs.-evolved competitions or comparisons, however, it is un-
known if this limitation contributed to the observed di®er-
ence in achievement between the two types of control. To
resolve this issue, future evolved controllers could be forced
to produce binary muscle activation signals by applying a
threshold Tter to their outputs. Then, identical human and
evolved activation patterns would be possible, placing hu-
man and machine on equal footing in both gameplay and
research comparisons.

Another interesting di®erence between human and evolved
controllers is the input that each receives. Although not all
EVCs in this implementation use it, they have the potential
to employ proprioceptive signals based on the current length
of their muscles. This information is not directly available
to the human user. Similarly, human users have access to a
visual representation of the creature in simulation, providing
them with information not available to the evolved controller
(e.g.: the orientation, position, and velocity of many body



segments; or which parts of the creature are in contact with
the ground). While it is not clear which of these might confer
a larger advantage, or whether the di®erences are signi cant
at all, it is at least worth noting the di®erence.

On the topic of future work, one important step would
be more deeply exploring the potential for evolution of new
creatures and online interaction. In a full version of the
game, great value might be added by allowing users to evolve
their own creatures, trade them with each other, and com-
pete against each other online.

Another potentially valuable extension to this initial ex-
periment would be the addition of di®erent tasks. Any ac-
tion that EVCs can be evolved to perform (jumping, climb-
ing, swimming, “ghting, etc.) might serve as a rewarding
new control challenge for the game.

7. CONCLUSION

This paper has presentedDarwin's Avatars |a novel com-
bination of gameplay and procedural content generation made
possible by evolutionary computation. Although similar phys-
ical control challenges have already proven successful in pre-
vious games, this new game adds the novel elements of three-
dimensional creatures and creatures which are unfamiliar
without being constructed by the user. Preliminary playtest-
ing showed that these gameplay mechanics have the poten-
tial to be entertaining and challenging, o®ering users the
opportunity for learning and close competition. And im-
portantly, this system's inherent ability to generate the core
ingredient of its gameplay|novel control challenges, in its
unlimited supply of newly evolved creatures|makes for a
unique and compelling new combination. In addition, the
game's core mechanic of human control of muscles in EVCs
made it possible to compare human and evolved controllers,
providing some initial insight into how these two types of
controller compare numerically, how they may di®er in terms
of technique, and potential improvements and future work
implied by these di®erences.
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