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Abstract—The impact of game content on the player experience
is potentially more critical in casual games than in competitive
games because of the diminished role of strategic or tactical
diversions. Interestingly, until now procedural content generation
(PCG) has nevertheless been investigated almost exclusively in the
context of competitive, skills-based gaming. This paper therefore
opens a new direction for PCG by placing it at the center of
an entirely casual flower-breeding game platform called Petalz.
That way, the behavior of players and their reactions to different
game mechanics in a casual environment driven by PCG can be
investigated. In particular, players in Petalz can (1) trade their
discoveries in a global marketplace, (2) respond to an incentive
system that awards diversity, and (3) generate real-world three-
dimensional replicas of their evolved flowers. With over 1,900
registered online users and 38,646 unique evolved flowers, Petalz
showcases the potential for PCG to enable these kinds of casual
game mechanics, thus paving the way for continued innovation
with PCG in casual gaming.

Index Terms—Procedural Content Generation, Collection Me-
chanics, 3D printing, CPPNs.

I. INTRODUCTION

While the potential of search-based procedural content gen-
eration (search-based PCG; [27, 28]) in competitive gaming is
now well-established [7, 15, 20], its benefits are less examined
within the context of social and casual games. Yet casual
gaming, with its focus often on activities like collecting1 or
decorating2, is among the most promising venues for realizing
the potential of procedurally generated content. After all, these
kinds of casual activities are fueled by content that therefore
must continually be refreshed and updated. A casual game
that could continue to generate new content in concert with
the actions of the players would open up new avenues for
entertainment. Moreover, such a system might even produce
value by yielding products that players genuinely desire to
collect and trade.

This paper provides a comprehensive overview of the Petalz
video game, which is designed to demonstrate that such gen-
erated content can indeed integrate effectively into a modern
casual Facebook game. It unifies and expands specific results
reported previously in conference proceedings [16, 18] with
newer experiments on the conversion of generated content to
real three-dimensional printed artifacts. The main contribution
is thus the first investigation of a complete PCG-based casual
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game that has been deployed on Facebook and tested by
hundreds of players.

The main game mechanic in Petalz is flower breeding.
Each player is given a balcony (which can later be expanded
to multiple balconies) where the player can arrange pots in
which they breed unique custom flowers through a specialized
genetic encoding designed for evolving flower-like forms. The
uniqueness of each flower bred in Petalz facilitates a bond
between the player and his or her flowers, which are thereby
genuine reflections of each player’s effort and personality.
Social interactions like visiting the balconies of friends and
watering their flowers further help to build community and
offer opportunities for recognition.

The key issue investigated is how the generated content
can naturally enhance the game experience. The opportunities
explored for such benefits include (1) a marketplace for buying
and selling evolved content, (2) a content collection mechanic
that recognizes and rewards players for acquiring diversity,
and (3) the ability to generate printable models of the evolved
content. All three of these mechanics become possible for the
very reason that the flowers are unique generated artifacts, and
each is accordingly demonstrated in depth in this paper. In this
way the hope is to inspire continued research and innovation
in the application of techniques in PCG to casual gaming.

The paper begins in the next section by reviewing related
prior work and the particular search-based technologies behind
Petalz. Section III then details the game’s implementation and
mechanics. Next, Section IV explains how the player-bred
flowers in Petalz become part of a global marketplace. The
generated content is further leveraged in Section V to turn
Petalz into a collecting game, and additional value for the
generated content is demonstrated in Section VI through 3D
printing. The paper finally concludes with discussion and fu-
ture work (Section VII), as well as a conclusion (Section VIII).

II. BACKGROUND

This section first discusses social and casual games, as well
as existing work combining PCG with traditional video games.
The section concludes by reviewing the technical building
blocks of the PCG algorithm employed in the Petalz game.

A. Social and Casual Games

Social and casual games represent a rapidly expanding
market in the video game industry [2]. Typically, these games
distinguish themselves from traditional video games by (1)
not requiring high levels of skill from their players and
(2) facilitating and rewarding social interactions among their
players [11]. Combining these two factors results in games
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with a much wider audience than “traditional” video games,
in part because feedback loops created by both game content
and social pressure keep players engaged.

Some of these games, such as Candy Crush Saga3, rely on
simple rules to build increasingly complex and competitive
challenges. Other games, like Pocket Frogs4 task the player
with finding and collecting a diversity of artifacts (e.g. diverse
frogs in Pocket Frogs). These types of games have been
successful in part because they tap into the human desire
to find novelty and set attainable goals [14]. By exploiting
our curious and competitive nature, as well as many other
human factors [10], many social and casual games exhibit the
powerful ability to keep players coming back again and again.

Many of these games are free for users to play, and are
monetized by advertising or in-game purchases. Thus there
is a disincentive for game developers to provide a definitive
ending point that might break player engagement. As a result,
a challenge in these games is that keeping users engaged
requires a stream of new content (e.g. puzzles, levels, items
to collect). Problematically, this new content can be expensive
to produce because it requires continual creativity to design
content sufficiently outside the players’ current in-game expe-
rience; otherwise if content is only superficially novel existing
players may get bored and stop playing. In contrast to more
traditional video games, social and casual games are thus
often continually in development, requiring the expense of
artists, programmers, and designers to continually generate
new content. To ameliorate this added expense, this paper
presents an alternative approach wherein this new content
can instead be created and categorized algorithmically through
PCG, which is reviewed next.

B. Procedural Content Generation

When applied to games, PCG allows game elements (e.g.
maps, textures, items, quests, etc.) to be generated algorith-
mically rather than through direct human design [8, 27]. This
approach can reduce design costs and can also benefit players
by providing them unique experiences every time they play.
For example, the popular Diablo series5 features procedurally
generated dungeons that players explore as a central focus of
the game. Like Diablo, many other PCG approaches similarly
rely on a fixed set of parameters and randomness to generate
content within a heavily constrained space of possibilities.
However, a recent focus is to apply artificial intelligence
approaches to enable more open-ended generation of PCG.

In particular, evolutionary computation and other search-
based approaches [27] can limit the need for hand-designed
rules, and may thus further save on PCG development costs.
More interestingly, it also enables design of new content
outside the scope of a fixed space of rules. One popular
technique is interactive evolutionary computation (IEC [25]),
in which the user in effect guides an evolutionary algorithm.

An example of IEC applied to video games is provided
by NeuroEvolving Robotic Operatives (NERO [24]), in which
players guide the evolution of a team of fighting robots. In

3Copyright King
4Copyright NimbleBit
5Copyright Blizzard Entertainment, http://blizzard.com/

another example, Galatic Arms Race (GAR [7]), weapons
are evolved automatically based on user behavior. Further
examples include Avery et al. [1], who evolved several aspects
of a tower defense game, Shaker et al. [21] who evolved levels
for the platform game Super Mario Bros, and Togelius and
Schmidhuber [26], who experimented with evolving the rules
of the game itself. While not strictly a video game, Electric
Sheep [5] is an example of IEC applied to a crowd-sourced
internet application. Electric Sheep enables users to evolve
fractal animations (called sheep) in form of an interactive
screen-saver. Electric Sheep shows how crowd-sourced and
collaborative IEC can allow users to produce interesting visual
digital artifacts, providing precedent for the approach in Petalz.

The next section reviews a particular evolutionary repre-
sentation that has previously proven promising for generating
content, and is thus applied in the Petalz game.

C. Compositional Pattern Producing Networks

The flowers in Petalz are generated by a variation of arti-
ficial neural networks (ANNs), called compositional pattern
producing networks (CPPNs [22]), which differ in their set of
activation functions and how they are applied. While ANNs
often contain only sigmoid or Gaussian activation functions,
CPPNs can include both such functions and many others.
The choice of CPPN functions can be biased toward specific
patterns or regularities. Additionally, unlike typical ANNs,
CPPNs are usually queried across a space of possible input
patterns to represent a complete image or pattern. Because they
are compositions of functions, CPPNs in effect encode patterns
at infinite resolution and can be sampled at whatever resolution
is desired. Other successful CPPN-based applications include
Picbreeder [19], MaestroGenesis [9], EndlessForms [4], the
Galactic Arms Race (GAR) video game [7], folded wire
robots [17], and virtual soft-body robots [3]. Note that the
modifications to the general CPPN representation to produce
flower-like images are described in Section III-A.

D. Neuroevolution of Augmenting Topologies (NEAT)

The flower-encoding CPPNs in Petalz are evolved with the
NEAT algorithm [23], which is the standard neuroevolution
algorithm for such purposes [6, 19, 22]. NEAT begins with
a population of simple neural networks or CPPNs and then
adds complexity over generations by adding new nodes and
connections through mutations. By evolving networks in this
way, the topology of the network does not need to be known a
priori; NEAT searches through increasingly complex networks
to find a suitable level of complexity. For a complete overview
of NEAT see Stanley and Miikkulainen [23]. Most importantly,
such complexification, which resembles how genes are added
over the course of natural evolution, allows NEAT to establish
high-level features early in evolution and then later elaborate
on them. For evolving content, complexification means that
content (e.g. flowers in the case of Petalz) can become more
elaborate and intricate over generations.

III. THE PETALZ VIDEO GAME

This section introduces the Petalz video game (available
publicly at http://apps.facebook.com/petalzgame/), in which
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Figure 1: Petalz Balcony View and Flower Interface. This
picture shows a user’s balcony that was decorated with various
available flower pots and player-bred flowers. Through a
flower context menu players can breed flowers, print them in
three dimensions, share them with their friends on Facebook
and visit players that contributed to a flower’s lineage. Petalz
is available online at: http://apps.facebook.com/petalzgame/

players create virtual flowers through a PCG algorithm. The
central game mechanic for players is to maintain and breed
a collection of unique flowers. All players possess a balcony
(Figure 1), which they can decorate with various items and
flower pots that are purchased in the game’s market. This
market is also where flowers bred by other players can be
bought and sold. Players can also interact by visiting each
other’s balconies and watering or liking the flowers there.

Petalz is the first game to (1) combine social gaming and
search-based PCG, (2) implement a market for user-evolved
content, (3) extend a PCG-based game with collection me-
chanics and (4) allow 3D printing of in-game evolved content.
The next section describes the PCG algorithm to generate the
flowers in Petalz and the underlying flower encoding.

A. Generating Flower Images and Shapes

The purpose of an encoding is to define a space of possible
content that can be explored. Although CPPNs have previously
been applied to generating two-dimensional images [19] and
three-dimensional structures [4] the same generic approach
is not possible to apply when a specific class of image or
structure is desired. Thus this section discusses the modifi-
cations made to the general CPPN representation to produce
flower-like images. In short, the general idea behind the flower
encoding in Petalz is to deform a circle such that the resulting
shape resembles a flower.

The process begins by deforming the circle. Because this
approaches focuses on a radial pattern, polar coordinates {θ, r}
are input into the CPPN (Figure 2). For each value of θ, the
deformed radius of the circle at that point (rmax) is queried
by inputting {θ, 0} into the CPPN. Next, to fill in the colors

L=.5

L=1.0

r

Figure 2: CPPN Flower Encoding. The CPPN that encodes
flowers in Petalz takes polar coordinates (r and θ) as well as
layer (L) and bias (b) values. The outputs are an RGB color
value for that coordinate. The value rmax is also output, but
only checked when r = 0 to determine the maximum radius
for a given θ. The number and topology of hidden nodes is
evolved by a standard CPPN-NEAT implementation [22].

of the flower’s surface, each polar coordinate between 0 and
rmax is queried with the same CPPN for a RGB color value.
This approach produces a deformed, colored circle, but still
may not produce flower-like images. Many natural flowers that
humans find pleasing demonstrate basic radial symmetry in the
form of their petals; this property is exploited in the encoding
by inputting sin(Pθ) into the CPPN instead of the raw θ
value, which creates a repeating pattern of deformation and
coloration. The optional P parameter allows control over the
period of the sine function and thus the maximum number of
repetitions around the circle.

Finally, to further improve the aesthetic of the flowers,
the concept of layers is implemented to reflect that flowers
generally have internal and external portions. To encode this
property, a new flower is queried through the same CPPN for
each layer L. Each such layer is scaled based on its depth
and drawn on top of the previous layer. Thus the inputs to
the CPPN are {θ, 0, L} and the outputs are {R,G,B, rmax}
to determine the shape of each layer (Figure 2). The internal
coloring is then determined by querying the CPPN as with the
outermost layer. Interestingly, because the layers are queried
by the same CPPN, they are mathematically related, giving a
natural look.

It is important to note that the aim of the algorithm is not
to produce flowers that necessarily look biologically realistic.
While the common number of petals of real flowers is one of
the smaller Fibonacci numbers (e.g. 2, 3, 5, etc.), the majority
of Petalz flowers has a number of petals that is a multiple of
six. This is due to the current setting of parameter P=6, which
was chosen because it produced flowers that are most visually
appealing at the current flower size. Also importantly, the
produced flowers align with the cartoon theme of the overall
artistic style and the chosen setting makes it possible to render
only a quarter of the flower and copy it over to the other
quadrants. Non-even values would break that optimization,
which is necessary for the fast rendering required in a game
context. The interested reader is referred to the following
textbook by Mabberley [13], which gives a comprehensive
overview of different plants and their classifications.



1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2416206, IEEE Transactions on Computational Intelligence and AI in Games

4

+ ⇒

Figure 3: Flower Cross-pollination. By mating the CPPNs
of two parents, children that exhibit the traits of both parents
can be created. This approach gives players a powerful but
intuitive way to explore the space of flowers.

B. Game Mechanics Overview

The primary interface through which players interact with
flower evolution is a context menu that the player can open by
hovering over a particular flower (Figure 1). The menu allows
the player to (1) pollinate the flower, (2) cross-pollinate the
flower with another flower, (3) post the flower to a friend’s
Facebook wall, (4) clone the flower, (5) inspect the flower’s
family tree, (6) sell the flower on the marketplace (described in
the next section), (7) store the flower in the player’s inventory,
(8) or send the flower to Shapeways to print it in three-
dimensions (described in Section VI). Actions like pollination
(i.e. mutation of a single flower genome), cross-pollination
(i.e. crossover between two flower genomes; Figure 3) and
cloning produce up to five little flower seedlings, which are
miniature version of what the adult flower would look like.
These seeds can then be planted by the user after which they
take up to several minutes to grow into their adult form.
Additionally, because users in Petalz can collaborate to create
and share their flower creations, the top four collaborators
for a particular flower are also shown. These collaborators
can be visited through the context menu, thus creating a
social link between different users through collaboratively and
procedurally evolved content.

Every flower that is not a clone is unique, which, as the
results in this paper will show, allows players to continually
find novel flowers with characteristics evolved from flowers
they preferred in the past.

C. Development

Petalz was developed as an online social game that currently
runs through Adobe Flash on the Facebook platform. The
game was designed to be casual, featuring an intuitive and
easily accessible UI. The development of the game (which is
still ongoing) has been underway for over three years by a six-
member team (which includes one artist). The Petalz client is
composed of 71,241 source lines of actionscript code (SLOC),
while the Petalz server is 3,972 SLOC of PHP.

The development of Petalz can be divided into three major
milestones that will be explained in detail in the following sec-
tions. First, a flower marketplace (Section IV) was introduced
that allows the players to sell and share their flowers with other
Petalz players. Transactions in which one player buys seeds
from another were designed to create a new social element that
links players through an in-game economy of evolved content.
Second, because the procedurally generated flowers on their
own belong to no predefined set of classes, for collectors there
is no inherent concrete quantifiable measure of progress. Thus

Figure 4: Petalz Marketplace. The marketplace enables play-
ers to purchase flowers from other players and to sell their
own unique creations. Players can chose to view the flowers
listed by all players or by only a specific player, and can sort
flowers based on their price, listing date or number of likes.

collection mechanics (Section V) were added to incentivize
collecting and thereby make the game more engaging. Finally,
to further extend the impact of a PCG-oriented game, Petalz
was augmented to allow the automated conversion of flowers
into physical reality through integration with the Shapeways
3D printing marketplace (Section VI).

IV. THE PETALZ MARKETPLACE

The fact that each flower is a unique and lasting discovery
opens up a number of intriguing possibilities. One is that
players can sell their flowers in a global market to other players
(Figure 4). The user can list a flower in the market either
directly from her balcony or inventory. The listing price in the
virtual “coin” currency, which can be earned by growing new
flowers or performing other actions in the game, can be freely
chosen by the seller in a range from 10 to 9,999 coins. Users
have to pay 10% of the price as a fee to list their flower for a
maximum duration of six days. The listing fee is intended to
discourage spamming the market with low-quality flowers.

Because flowers are genuinely novel artifacts, their seeds
have potential economic value that can allow skillful breeders
to be rewarded for their efforts. Furthermore, the transaction in
which one player buys seeds from another creates a new kind
of social interaction that links the players in the transaction.
This interaction goes beyond simply enjoying the product of
another player: Once seeds are purchased, the buyer can now
breed new flowers from the purchased seeds, generating a
whole new lineage. The market in Petalz also has a section for
pre-evolved starter flowers, from which the player can choose
an aesthetically-pleasing flower to begin the game.

Beyond user-evolved flowers players can also purchase new
backgrounds, decorations or flower pots, allowing them to
customize their balcony to their unique taste. A variety of
balconies from different players are shown in Figure 5.
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Figure 5: Example Player Balconies. The ability to breed unique flowers combined with the option to purchase a variety of
backgrounds, flower pots and decorations, allows players to create unique balconies.

User Data
Total Testers 22
Max # of Flowers Evolved 1, 206
Avg # of Flowers Evolved 155.14
Avg # Flowers Listed 37.54
Max # Flowers Listed 157
Avg # Flowers Bought/Sold 10.95
Max # Flowers Sold 36
Max # Flowers Bought 71

Table 1. User Data During Testing Period. A summary of a snapshot
of user data records taken during the four month testing period. Users
tended to evolve a significant number of flowers and interact often
with the market.

A. Market Analysis

To investigate the implications of a market place for evolved
content, Petalz was initially tested by 22 players (including
the five authors) over a period of four months. A variety
of statistics intended to illuminate the impact of the evolved
flower marketplace on the Petalz game were derived from a
data snapshot retrieved at the end of this testing period. It is
important to note that none of the extrema data, i.e. minima
or maxima in the tables in this paper, result from the authors.

Table 1 summarizes general information about the behavior
of the players during the testing period. It is evident that
players together yielded both significant evolutionary and
market activity: The average player evolved no fewer than
155.14 flowers and listed on average 40 on the market.

Table 2 provides further insight into the dynamics of
evolution in the game. First, over three thousand flowers
were evolved by the 22 players during the testing period
suggesting that breeding is a significant attraction in the game.
Furthermore, many flowers resulted from long evolutionary
lineages for interactive evolution (103.19 generations on av-
erage separate flowers displayed on users’ balconies from
the flowers that seeded the game). In addition, data from
“liked” flowers suggests that there is measurable variety in the
aesthetic appeal of flowers and that users are more likely to

Flower Evolution Data
Total Evolved Flowers 3, 703
Total Liked Flowers 130
Max Generation 288
Avg Generation of Balcony Flowers 103.19
Avg Likes of All Evolved Flowers 0.04
Avg Likes of Balcony Flowers 0.5
Avg # of Users Contributing to Balcony Flower 7.27

Table 2. Flower Evolution Data During Testing Period. Users
collaborated indirectly to evolve many flowers and tended to display
those found to be more aesthetically pleasing on their balconies.

display more appealing flowers on their balconies. Thus taken
as a whole the data from Table 2 suggests that evolution within
Petalz is driving force behind player behavior.

Given the significance of breeding within Petalz, an impor-
tant question is what impact the evolved marketplace has on
the game. To help investigate this question, each transaction
in the Petalz marketplace was recorded during the testing
period. This recorded data is summarized in Table 3. Some
of these statistics establish that the marketplace is working
in an intuitive manner. For example, cheaper flowers sold
better than more expensive flowers, and not all listed flowers
were purchased. Furthermore, the flowers that were bought
tended to have more likes, indicating that flowers that appealed
more aesthetically to users were also more highly valued by
them. More significantly, the statistics also support that the
marketplace is integral for both facilitating collaboration and
evolving more desirable flowers. Importantly, at the time the
data snapshot was taken, the majority of flowers displayed
on users’ balconies were close descendants of flowers bought
from other users on the marketplace, although users can
choose to ignore the marketplace completely or buy not from
other users but from a permanent set of pre-evolved starter
flowers that are always available on the marketplace.

Furthermore, marketplace flowers themselves were on av-
erage the product of many users collaborating, indicating
that flowers bought from the marketplace were often further
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Flower Market Data
Total Market Listings 826
Total Market Sales 241
Avg Listing Price of Flowers 216.97
Avg Sales Price of Flowers 164.12
Avg Likes for Listed Flowers 0.36
Avg Likes for Sold Flowers 0.64
Avg # of Users Contributing to Market Flower 7.46
Proportion of Balcony Flowers Descended

from Other Users’ Flowers’ 0.73
Avg Generations from Market to Balcony

Flower 6.71
Total Currency Flow on Market 39,555

Table 3. Flower Market Data During Testing Period. Flowers that
were cheaper or more aesthetically pleasing tended to sell better.
Importantly, the market also facilitated collaboration between users.

(a) 4 Contributors (b) 11 Contributors (c) 11 Contributors

(d) 12 Contributors (e) 2 Contributors (f) 11 Contributors

Figure 6: Evolved Flower Examples. The CPPN-based en-
coding allows the discovery of a great variety of aesthetically-
pleasing flowers, which show varying degrees of complexity.
The number of contributing users for each flower shows that
the Petalz flower market facilitates meaningful collaboration.

evolved and later sold to other users. Figures 6 and 7 present
examples of this process. While Figure 6 shows a selection
of user-evolved flowers, Figure 7 shows a phylogeny, col-
laboratively evolved by 13 different users. The tree reveals
that Petalz together with its marketplace allows users to
collaborate on a wide variety of flowers. While some mutations
produce a minor change in the flower’s phenotype (Figure 7a),
other mutations produce a greater variety of different flowers
that nevertheless share common features (Figure 7c). Cross-
pollination allows players to breed flowers that exhibit a
mixture of the traits of both parents (Figure 7b).

However, while Petalz allows the player to evolve an unlim-
ited variety of different flowers and the marketplace enables
users to easily collaborate with each other, it became apparent
that some measure of progress would become necessary to
motivate players to continue playing such a game. Therefore
we introduced the second Petalz milestone, a method for
augmenting PCG-games with collection mechanics, which is
described next.

V. PETALZ COLLECTION MECHANICS

Collection game mechanics have worked well in engaging
players in a variety of different games like Pocket Frogs or
the Pokémon series. However, how PCG-based games can be
augmented with such mechanics is an open research question.
Although PCG approaches can benefit players by presenting
them with unique experiences and content each time they play,
in PCG games like Petalz or GAR [6], there are no a priori
categories of flowers or weapons for the player to collect.

Furthermore, though some players thrive in such free-form
games without explicit goals, many other players enjoy goal-
directed game mechanics where concrete purpose is directly
provided (e.g. collect all 80 flower species, collect ten flowers
of a specific species). Therefore a promising idea is to au-
tomatically organize the procedurally generated content into
specific categories, thereby providing a means to augment any
PCG game with collection mechanics.

To automatically organize procedurally generated content
requires a classifier that can determine the category of newly
generated content based on a training set of data. Importantly,
this classification has to be meaningful to the player. For
example, if the algorithm assigned the same class to two very
differently looking flowers, the collection mechanic would not
add meaning and structure to the player experience.

In Petalz the procedurally generated content is classified
based on the self-organizing map (SOM) algorithm [12]. While
many other clustering algorithms could be applied, the SOM
offers some unique advantages that give it particular appeal in
a game context, which will be explained in the next section.

A. Self-Organizing Map

The SOM [12] is an artificial neural network that performs
an unsupervised mapping from a high-dimensional input space
RD with input patterns X = {xi : i = 1, ..., D} onto a two-
dimensional grid of neurons. Each neuron j in the computation
layer is connected to each input neuron i with weight vector
wj = {wij : i = 1, ..., D}.

The basic training process works by iteratively presenting
an input vector x to the SOM and then comparing the weight
vectors of the neurons on the grid to that input vector. The
neuron c with the most similar weight vector is called the
best matching unit (BMU) and is defined by the condition:
||x(t)− wc(t)|| ≤ ||x(t)− wi(t)||∀i.

Once the BMU is determined, its weights and the weights
of all the neurons within a fixed distance to the BMU are
updated: wi(t+1) = wi(t)+hc(x),i(x(t)−wi(t)), where t is
the index of the training step and h is called the neighborhood
function, which is commonly a Gaussian function:

hc(x),i = α(t)e
− ||ri−rc||

2

2σ2(t) , (1)

where 0 < α(t) < 1 is the learning-rate, which decreases
monotonically with the training step t. In addition, ri and
rc are the locations on the SOM map and σ(t) corresponds
to the width of the neighborhood function. The width of the
neighborhood function also decreases monotonically with the
training steps.
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Figure 7: A Phylogeny of Flowers. This tree depicts the efforts of 13 different users. Each parent and child are separated
by one generation (e.g. one pollination action). If a flower is the result of cross-pollination, the line connecting the second
parent is shown in red. The inset shows modest phenotypic changes (a), a cross-pollination example (b), and more significant
phenotypic changes (c) that nevertheless share common features.

The SOM can help with classification [12] by assigning a
class to each neuron and determining the class of a new sample
based on the class of its BMU. In other words, by feeding
a sample of procedurally generated content into a SOM of
predefined size, a set of categories is generated that helps to
classify future content even though in principle the number of
possible content is unlimited. Figure 8 gives an overview of
this approach to categorizing procedurally generated content.

Two properties of the SOM give it particular appeal in
categorizing procedurally generated content for the purpose of
encouraging players to collect it. First, after training, the SOM
forms a topographic map of the input space, in which content
that is visually similar is also nearby in space. In this way
the SOM can provide an intuitive visualization of the space of
content for the player. Second, the prototype weight vectors
of the neurons on the grid can be visualized to give the player
an idea of categories not yet discovered. The next section
describes how the SOM algorithm is applied to automatically
categorize flowers into different species.

B. Petalz Classification Experiment

To test the automatic categorization of procedurally gen-
erated in Petalz, the game is augmented with a SOM-based
collection game mechanic that allows the player to track their
progress in discovering all pre-classified flower categories.

To classify different flowers with a SOM the question of
how to best represent these flowers for training becomes
important. Two different methods for presenting flowers to
the SOM are tested to determine which produces the most
meaningful flower categories. The SOMs for all approaches
have the same size of 5×16 neurons, resulting in 80 different
categories for user-bred flowers. Each SOM is trained with a
selection of 2,000 diverse flowers that were evolved by players
during the game.

Figure 8: PCG Collection Game Mechanic. The SOM is
first trained with samples of procedurally generated content
(a). Once the SOM is fully trained, new content discovered
by the player can automatically be categorized (b). Tracking
the collection progress (c) can then add meaning and structure
to the player experience.

In the phenotypic clustering approach the images of the
training flower are scaled from 200 × 200 pixels to a 50 ×
50 pixel black-and-white version. Because the procedurally
generated flowers are all symmetric along the x and y axis it
is only necessary to feed the top-left square (25×25 pixels)
into the SOM for training and also classification during the
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Figure 9: Phenotypic Flower Clustering. The picture depicts the 80 distinct species in Petalz. Examples of flowers clustered
into three different species are depicted to the right. The main result is that the phenotypic clustering of flowers is meaningful
and thus demonstrates the feasibility of augmenting PCG games with a collection game mechanic. Note that the SOM is
toroidal, which means that the flower prototypes to the far right of the flower chart (left panel) are also bordering the prototype
vectors to the far left. The same holds true for the flowers at the bottom and the top of the flower chart.

game. Therefore each flower is described by a feature vector
of 625 integers.

In the genotypic clustering approach each flower is de-
scribed by its pair-wise genotypic distance to the 2,000 other
flowers in the training set. Following Stanley and Miikkulainen
[23] the distance δ between two CPPN encodings can be
measured as a linear combination of the number of excess
(E) and disjoint (D) genes, as well as the average weight
differences of matching genes (W ): δ = E +D +W .

C. Classification Results

Figure 9 shows the phenotypic clustering by the SOM
algorithm in Petalz. The flowers belonging to the same species
show a clear resemblance to one another, suggesting that the
SOM can produce a meaningful clustering of the procedurally
generated flowers.

Every time the player discovers a new species, a flower
chart is displayed (Figure 9, left) and the newly bred flower is
highlighted. In addition to the discovered flowers, the proto-
type vectors of the remaining flower species are also shown.
That way, the flower chart gives the player direct feedback
about his progress in the game and about flower categories
that are still undiscovered. Note that the 80 displayed flower
categories reflect the topology of the SOM (16×5 neurons).

Additionally, because the SOM produces a topographic map
of the training data, flowers that are phenotypically more simi-
lar than other flowers are also grouped closer together in space.
As Figure 9 (left) shows, the result is a visually appealing
smooth gradient of different flower prototype weights.

The genotypic clustering (based on the genotypic distances
between the flowers) is shown in Figure 10. While some
classifications are satisfying (e.g. Species 1), some flowers
that do not show a clear phenotypic resemblance also group
together (e.g. Species 25, Species 69). These inconsistencies
in the clustering happen because small changes in the flower’s
genotype can sometimes produce more significant changes in
the decoded phenotypes.

Figure 10: Genotypic Flower Clustering. This figure shows a
SOM clustering of the flowers based on their pairwise geno-
typic distances. While such genotypic clustering sometimes
produces meaningful clusters (e.g. Species 1), often flowers are
grouped together that look significantly different (e.g. Species
25, Species 69).

The main classification result is that procedurally generated
content can automatically be clustered into different categories
(like flower species), thereby adding more meaning and struc-
ture to player experience. Additionally, the results suggest
that – at least in Petalz – a clustering based on phenotypic
characteristics produces more intuitive classifications than one
solely based on genotypic distances.

So far we have explored how a game with PCG offers
opportunities for a global marketplace of evolved content and
a collection mechanism that rewards players for acquiring
diversity. Another interesting possibility for extending the
impact of a PCG-focused game is to enable user-generated
content to be physically embodied in the real world. An
approach enabling such embodiment for the Petalz game is
described in the next section.

VI. AUTOMATED 3D PRINTING OF EVOLVED FLOWERS

While physically generating content originally evolved in
simulation has been previously explored in collaborative IEC
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(e.g. through printing evolved images on consumer items [19]
or 3D printing an evolved shape [4]), it has not previously
been applied to enhance PCG-focused games. Importantly,
computer games may be a particularly promising domain for
transferring simulated content into reality because games can
provide mechanisms for encouraging emotional connection
with in-game artifacts, which could motivate players to pur-
chase embodied versions of such artifacts. For example, in an
analogy to the real world, flowers in Petalz grow over time
from small initial buds; the resulting uncertainty in how such
flowers will eventually appear may stimulate anticipation of
such flowers’ first blossoming. In this way, players may begin
to care about the game and the artifacts within the game that
they have created, which might motivate them to purchase real-
world versions of such artifacts. Furthermore, PCG in games
can borrow existing social convention and meaning from the
real world. For example, because real flowers are often given
as gifts, it may be possible that once embodied, user-evolved
flowers in Petalz could also be given as physical gifts.

For these reasons it may be promising to physically in-
stantiate content evolved within PCG-focused games. This
section focuses on exploring such an idea using Petalz as
a case study. One such approach for the Petalz game is
algorithmically to generate three-dimensional models from
two-dimensional flower images generated within the game,
such that the resulting three-dimensional models can then be
3D printed. In particular, the approach implemented in Petalz
is to extrude the outline of a particular flower’s bitmap to
produce a three-dimensional model textured with the original
bitmap, which is then integrated with the Shapeways 3D
printing service. The entire process is automated and integrated
with the game to enable players to easily bring simulated
content into the real world. The next sections describe this
process and its results in more detail.

A. Three-dimensional Flower Conversion Algorithm

There are two main stages in the process that converts two-
dimensional evolved flowers in Petalz to three-dimensional
flower models that can be successfully rendered by a 3D
printer: (1) smoothing the two-dimensional flower to remove
artifacts that cannot be 3D printed, and (2) generating a
three-dimensional model from the smoothed two-dimensional
flower. In the first stage the outline of the two-dimensional
flower is analyzed for outcroppings that are too narrow to be
successfully printed.

Rather than smoothing the generated flower bitmap itself,
which might require fragile or complicated image processing
algorithms, the implemented approach instead smooths the
CPPN-generated shape. First the CPPN is queried for radii
over all angles (as detailed in Section III-A) to create an
array that defines the flower’s outline. Then the smoothing
algorithm iterates over this array repeatedly to detect and
smooth away small outcroppings (see Algorithm 1). Note that
the smoothing algorithm also enforces that each radius value is
at least equal to a minimal threshold to ensure that each flower
has a printable central core. Finally, using the smoothed radii
(instead of the original queried radii), the CPPN is queried

Algorithm 1 Flower-smoothing Algorithm

1: function SMOOTHFLOWER(radii)
2: outcropping found ← True
3: radii length ← length of radii
4: while outcropping found do
5: outcropping found ← False
6: for i ← 0,radii length-1 do
7: if OUTCROPPING DETECTED(radii,i) then
8: outcropping found ← True
9: radii ← MOVING AVERAGE(radii)

10: for i ← 0,radii length-1 do
11: if radii[i] < min radius then
12: radii[i] ← min radius
13: return radii

to fill in the flower’s color using the algorithm described in
Section III-A.

In the second stage of the three-dimensional conversion
algorithm the smoothed flower bitmap resulting from the first
stage is converted into a three-dimensional model. The basic
process is to extrude the outline of the flower to approximate
the appearance of a real flower, texture the resulting shape with
the flower bitmap to match the original flower’s coloring, and
finally to attach a green 3D printed base.

First the outline of the flower is extruded, which requires
calculating a depth offset and thickness for each planar coor-
dinate of the two-dimensional flower outline. The depth offset
can be viewed as bending the flower’s outline into the third
dimension, while variable thickness across the flower’s outline
creates a recognizable flower shape. Three main features of
real flowers were exploited to create natural three-dimensional
flower models: natural flowers tend to have (1) petals that
curve upwards as a function of distance from the flower’s
center, (2) petals that taper at their edges, and (3) a center
differentiated from the flower’s petals. To realize (1) upward
curving petals, the entire two-dimensional flower outline was
bent by the following curve: z = dc

0.65

2.5 , where dc is the dis-
tance from the center of the flower and z is the magnitude that
the flower outline is offset into the third dimension (i.e. bent
upwards). To enable (2) tapered petals, thickness is decreased
the nearer a point on the flower is to any edge of the flower’s
shape and the further a point is from the flower’s center; the
resulting petals thus taper towards their edges and as they
project outwards. Finally, to (3) differentiate the center of the
flower from its petals, the thickness of the flower’s center was
increased to create a slight spherical bump in the middle of
the flower, which resembles a similar feature in some natural
flowers. The particular implementation of (2) and (3) is the
following calculation: thickness(x, y) = 3·de

5·dc + bump(x, y),
where de is the distance to the nearest edge of the flower and
dc is the distance to the flower’s center. The bump term is
specified by:

bump(x, y) =

{
0 if dc > 0.25

3 · (0.25− dc) if dc ≤ 0.25
. (2)
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After the outline is extruded to create a three-dimensional
model of the center of the flower and its petals, the next step
is to texture map the model with the smoothed flower bitmap
from the first stage of the conversion algorithm. This map-
ping is achieved simply through maintaining the unmodified
coordinates of the bitmap throughout the extrusion process. In
other words, before the flower outline is bent and extruded,
it is merely a flat sheet whose planar coordinates directly
correspond to the desired texture coordinates of the flower
bitmap. The final step is to attach a short green cylindrical base
to the bottom of the flower to enhance its similarity to a real
flower. A hand-designed textured cylinder model is attached
at the same set of coordinates to each processed flower. This
attached cylinder model is hollow and can thus fit an optional
separately-printed stem that can help to display the flower.

The end result of this process is a three-dimensional model
that is realizable by a 3D printer, that bears significant
similarity to the two-dimensional flower from which it is
converted, and that has aesthetic features inspired by natural
three-dimensional flowers. Figure 11.1 shows an example of
a flower in Petalz and the resulting three-dimensional model
created by this process.

B. Integration with Petalz and a 3D-Printing Service

While the previous section provides a means for generating
three-dimensional models, to provide a seamless experience
for players to 3D print their flowers additionally requires
facilitating access to 3D printers and providing an in-game
interface such that users can initiate model generation and
purchase the 3D-printed result. Because 3D printers, espe-
cially those capable of color printing, are not yet household
items, the model generation process was integrated with
the API of a popular 3D-printing service called Shapeways
(https://www.shapeways.com/). The Shapeways API provides
means for three-dimensional models to be posted algorithmi-
cally to a virtual storefront from which users can purchase
their flowers. After purchasing, the models are printed on 3D
printers owned by Shapeways and the resulting physical arti-
facts are then shipped to the user. Note that the approach is not
specific to Shapeways in particular; overall, the idea is that by
integrating with any 3D printing service, it is possible to create
a cascade of events that is initiated in-game by a user and
culminates in a 3D-printable flower being added to an online
storefront (https://www.shapeways.com/shops/finchbeak).

The gateway to trigger such a cascade in Petalz is imple-
mented through adding an icon to the pop-up menu made visi-
ble when a player hovers their mouse over a flower (Figure 1).
Once a player clicks on this icon, a new interface displays the
results of the bitmap smoothing algorithm designed to remove
unprintable artifacts. The motivation is to alert the user that the
three-dimensional model may be slightly different than they
expect. The user is then given the option to send the flower
to Shapeways, which initiates the conversion pipeline and the
player is then notified that in a few minutes the flower will
then be available through the Petalz storefront on Shapeways.
A banner displayed below the game provides a link through
which the storefront can be reached.

Highlighting the culmination of the three-dimesional con-
version algorithm and its integration into Petalz, a variety of
three-dimensional flowers automatically converted to a three-
dimensional model and printed through Shapeways can be
seen in Figure 11.2. A total of 24 flowers have been printed
so far (mostly ordered by the authors and their colleagues),
which validate the functionality of the service and conversion
process. As the feature has only recently been introduced,
the hope is that many future users will enjoy bringing their
simulated flowers into the real world.

VII. DISCUSSION AND FUTURE WORK

Overall this paper presents an ongoing experiment (the
Petalz game) demonstrating how search-based PCG can act
as a central game mechanic for casual online social games.
Because such games are often singularly focused on content,
the content-generating capabilities of user driven search-based
PCG can provide a practical alternative to continuously paying
professionals to generate novel content. In particular, in Petalz
creating new content through IEC is a core game mechanic,
facilitating a self-sustaining ecosystem of continual novelty.
While Petalz provides an anecdote on the feasibility of this
approach for casual social games, future work can explore
applications beyond evolved flowers; for example, breedable
virtual clothing or pets might also enable interesting casual
games. However, beyond simply importing PCG into a social
game, this paper also introduces specific mechanisms by which
PCG can enhance such games, which are discussed next.

First, the marketplace in Petalz suggests that user-discovered
PCG can potentially enable new kinds of in-game economies.
For example, beyond the value of the artifact itself, there is
value in each artifact’s genetic potential for creating further
novelty. That is, a player may want to purchase a flower from
another user not only because they find it pleasing, but because
they are interested in breeding variants of it. Furthermore,
the analysis of the market data suggests that the marketplace
both facilitates meaningful collaboration between users and
positively influences the game dynamics. Importantly, these
new insights open up unexplored possibilities in social gaming.
Purchasing a flower from another player creates a new social
interaction that links the players in an ongoing collabora-
tion. Additionally, players can post their flowers to friends’
Facebook walls, a unique gift possible to grant even to those
who are not Petalz players. These novel social interactions
ultimately allow users to discover and experience a continual
stream of new content beyond what the original artists and
developers can provide.

Second, the results also represent a proof of concept for
a general method to augment PCG games with a collection
game mechanic. Importantly, such a game mechanic can add
meaning and structure to a game player’s experience, which
otherwise might be missing when PCG is the game’s central
focus. That is, while user exploration of PCG can provide the
potential for unlimited novelty in game content, it still may
not inherently provide explicit purpose to motivate a user’s
search. For example, without the objective of collecting a
flower from all 80 SOM-determined species in Petalz, a game
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11.1 3D Flower Transformation 11.2 Examples of Printed Artificially-Evolved Flowers

Figure 11: Automated 3D Flower Printing The automated three-dimensional flower transformation is shown in 11.1. The
original flower (a) is processed to remove any outcroppings that would be too narrow and then converted into a three-dimensional
model (b). The three-dimensional model, together with a separate stem that fits into the baes of the flower (c) is then printed in
3D through Shapeways (d). Figure 11.2 shows flowers evolved in Petalz and then physically instantiated through Shapeways.
The ability to 3D print evolved artifacts allows the evolved content to be visible outside the context of a PCG-focused game.

player may have little direction beyond indulging their own
aesthetic preferences when breeding flowers. Although the
success of open world games demonstrates that not all players
require explicit goals, many players do enjoy the concrete
purpose they provide. Thus the clear benefit for extending
PCG games with a collection game mechanic is the potential
for broader appeal, by providing enjoyable opportunities both
for self-directed and goal-directed players.

Automatically clustering procedurally generated content
also opens up applications beyond the singular collection game
mechanic presented here. For example, many video games
segment levels into higher-level groups that are often called
worlds. Clustering procedurally-generated levels may provide
a means for such higher-level organization, and may facilitate
automatically generating worlds with a coherent theme. More
broadly, clustering content provides a mechanism for auto-
matic categorization of evolved artifacts, which can potentially
be exploited in other ways beyond theming or collection.

An interesting side-effect of the collection game dynamic
is that it grants inherent value to evolved artifacts in species
that are hard to discover. Players may not only feel a sense of
accomplishment in discovering a new species, but may assign
greater personal value to such flowers themselves because they
were hard to find. If players feel proud or connected to the
content they create, an interesting possibility is that they may
desire for such evolved content to be visible outside the context
of a computer game.

Finally, seamless integration of 3D printing into a PCG-
driven casual game offers a concrete mechanism to realize this
possibility; such 3D printing enables evolved game content
easily to escape the virtual boundaries of the Petalz game,
thus enabling casual games more directly to affect the real

world. In this way, beyond providing in-game economic value,
3D printing offers one way for evolved content to realize
real-world economic value. That is, people appear willing
to purchase three-dimensional incarnations of evolved flowers
with real currency, which may provide an alternative means
to monetize social games. Interestingly, physical procedurally-
generated flowers may also have sentimental value; much like
real flowers, 3D printed flowers can be given as a gift. In
this light, PCG offers the potential for personalized creation
of such gifts that goes beyond the traditional paradigm (e.g.
at a florist’s shop) of choosing from a limited selection of
prescripted options.

VIII. CONCLUSION

By presenting several special casual gaming features in the
Petalz video game, this paper highlighted the natural potential
for PCG to impact casual games in particular. Features like the
global marketplace, content collection dynamics, and printable
custom three-dimensional models only reach their full poten-
tial in the context of a world in which content is continually
rejuvenated and resupplied. By creating the possibility for such
a continual stream of content to draw from the behavior of the
players as opposed to requiring a dedicated team of artists
and programmers, PCG in Petalz establishes the practical
possibility of such features and raises the intriguing question
of what other types of casual games might benefit from similar
content-generating capabilities in the future.
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