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ABSTRACT

An unsolved problem in neuroevolution (NE) is to evolve
artificial neural networks (ANN) that can store and use in-
formation to change their behavior online. While plastic
neural networks have shown promise in this context, they
have difficulties retaining information over longer periods of
time and integrating new information without losing pre-
viously acquired skills. Here we build on recent work by
Graves et al. [5] who extended the capabilities of an ANN by
combining it with an external memory bank trained through
gradient descent. In this paper, we introduce an evolvable
version of their Neural Turing Machine (NTM) and show
that such an approach greatly simplifies the neural model,
generalizes better, and does not require accessing the entire
memory content at each time-step. The Fvolvable Neural
Turing Machine (ENTM) is able to solve a simple copy tasks
and for the first time, the continuous version of the double
T-Magze, a complex reinforcement-like learning problem. In
the T-Maze learning task the agent uses the memory bank
to display adaptive behavior that normally requires a plas-
tic ANN, thereby suggesting a complementary and effective
mechanism for adaptive behavior in NE.

Categories and Subject Descriptors

1.2.6 [Artificial Intelligence]: Learning— Connectionism
and neural nets

Keywords

Adaptive Neural Networks, Neural Plasticity, Neural Turing
Machine, Memory, Learning

1. INTRODUCTION

Human cognition has been an important source of inspi-
ration and benchmark, for various learning methods in the
fields of Machine Learning and Artificial Intelligence. One
important component of our human cognition is the ability
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to store information and to change our behavior based on
these stored memories.

A method that has shown promise in creating adaptive
behaviors is neuroevolution, i.e. the artificial evolution of
artificial neural networks (ANN) [3|. In order to enable these
evolving ANNs to learn during their lifetime, efforts have
been made to allow them to adapt online and learn from
past experience |14} 4, |1} |2 [10]. Adaptive neural networks
can either change through local Hebbian learning rules [6],
in which connection weights are modified based on neural
activation |14} |4], or recurrent neural networks (RNNs) that
store activation patterns through recurrent connections [1].
However, both approaches have so far not scaled up to solve
more difficult tasks in neuroevolution.

Recently, Graves et al. [5] extended the learning capabil-
ities of an ANN by combining it with an external memory
bank. The differentiable architecture of their Neural Tur-
ing Machine (NTM) was trained through gradient descent
and was able to learn simple algorithms such as copying,
sorting and recall from example data. However, the dif-
ferentiable memory requires the NTM to access the entire
memory content at each step, which can be prohibitively
slow for larger memory banks and will likely not scale-up
to large and more difficult problems. Others have tried to
overcome this obstacle by combining gradient descent meth-
ods with reinforcement learning methods, so far with only
limited success [16].

To extend the ability of these NTMs beyond purely super-
vised tasks to reward-based learning tasks, the approach in
this paper trains a NTM through a neuroevolutionary (NE;
|3]) approach. In this approach, both the topology and the
weights of a network are determined through artificial evolu-
tion. We first replicate the copy tasks from Graves et al. [5]
and show that the evolutionary NTM is significantly sim-
pler than the original NTM, generalizes perfectly to longer
sequences on the copy task, and is not limited by a fixed-size
memory bank. More importantly, we also demonstrate that
the NE approach can be applied directly to allow an agent
to solve, for the first time, the continuous double T-Maze
learning tasks.

The results suggest that augmenting evolving agents with
a NTM-based long-term memory component, might now en-
able NE to scale to more complex adaptive tasks.

2. BACKGROUND: NEURAL TURING
MACHINE (NTM)
The main idea behind the Neural Turing Machine (NTM)
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[5] is to augment a neural network with an external mem-
ory bank that the ANN can access through additional in-
puts and outputs. In this context, the network inputs and
outputs that read/write from/to memory are referred to as
heads. The memory in Graves’s model can either be ad-
dressed through content-based addressing (i.e. finding a po-
sition in memory that is most similar to values produced by
the ANN), location-based addressing (i.e. addressing mem-
ory based on a location emitted by the ANN not the content
itself), or a mixture of the two.

In Graves et al. [5] the ANN is trained through gradient
descent, which means that all the components need to be dif-
ferentiable. This limits the memory tape to a fixed length
and the addressing mechanism to affect all locations simul-
taneously (soft focus), but with varying weightings for each
location. Each memory location contains a memory vec-
tor of a predetermined length and heads read and write en-
tire vectors. Additionally, in the original NTM the memory
tape’s access is split into multiple different heads working
separately. Since each head works in isolation, weightings
over all memory locations needs to be calculated individu-
ally. This is done in multiple steps:

1. Focusing by content: For content addressing a weight
is calculated for each memory location, based on their
similarity to a key vector emitted by the ANN.

2. Interpolation: The resulting weighting is interpo-
lated with the weighting from the previous time-step
based on the value of an interpolation gate. This way
the controller can choose to use the weighting pro-
duced by the content addressing system partially or
completely, or also to ignore it.

3. Shifting: The weightings can be shifted left or right
through dedicated network outputs defining the shift
weighting vector. This shifting can be expressed as a
convolution operation over all weights, updating them
based on the emitted shift weighting.

4. Sharpening: If the shift weightings are not sharp,
convolutional operations can result in the dispersion of
weightings over time. Therefore the resulting weight-
ing can be sharpened based on an additional scalar
parameter.

Combined, these phases require a number of parameters,
which have to be defined for each individual read and write
head. From the weighting over memory locations, the write
head can use the erase vector and add vector to update all
locations, and the read head can combine the separate reads
into a single read vector.

The parameters necessary for the aforementioned opera-
tions are emitted by the connected ANN, and the memory
content read by the read heads is given as input to specific
ANN input neurons. This way, the ANN can store data
in the memory bank and later retrieve it. The inputs and
outputs controlling the TM can thus work in harmony with
those related to the actual task domain.

3. EVOLUTIONARY NEURAL TURING MA-
CHINE (ENTM)

In this paper, the NTMs are evolved with NEAT [15].
NEAT is an algorithm that evolves increasingly larger ANNs,

and has shown promise in a variety of complex control tasks.
It starts with a population of simple networks and then in-
creases complexity over generations by adding new nodes
and connections through mutations. By evolving ANNs in
this way, the topology of the network does not need to be
known a priori; NEAT searches through increasingly com-
plex networks to find a suitable level of complexity. Because
it starts simply and gradually adds complexity, it tends to
find a solution network close to the minimal necessary size.

Training an NTM through evolution allows the system to
be simpler and less restrictive (Figure ) than in the orig-
inal setup [5]. The components of the Evolutionary Neural
Turing Machine (ENTM) include the same as in the origi-
nal NTM architecture: an ANN controller and an external
memory bank. However, our model has a theoretically infi-
nite memory bank that can store vectors of size M at each
memory location. Additionally, it only has a single combined
head, which is responsible for both writing and reading. The
ANN interacts with the external environment through its in-
puts and outputs but it can also perform selective read /write
operations, shift the current read from/write to position in
memory, and perform content-based addressing. The num-
ber of neural network inputs and outputs corresponds to the
vector size M, plus additional outputs for control (e.g. shift,
etc.).

In more detail, the ENTM performs the following four
steps:

1. Write: A write interpolation parameter determines
how much of the existing memory vector at the current head
location should be interpolated with the given write vector:
Mt+1(h) — Mt(h) . (1 — wt) + at - we, where Mt(h) is the
memory vector at the head’s location at time t, w; is the
write parameter and a: is the write vector.

2. Content Jump: If the ANN jump output is higher
than a given threshold (0.5 in this paper) a content-based
jump of the head is performed to the position on the tape
which is most similar to the write vector. In the current
implementation this is based on an Euclidean distance func-
tion.

3. Shift: The controller can perform a shift, which moves
the memory head relative to its current location. The ANN
has three shift outputs, where the output with highest acti-
vation determines if the head should be moved one position
to the left, one position to the right or remain at the current
position.

4. Read: After the possible content jump and shift, the
neural network is automatically given the content of the
memory vector at the head’s final location as input at the
beginning of the next time-step.

4. EXPERIMENTS

The ENTM is tested on two different tasks: a copy task
[5] and a reward-based T-Maze scenario. We compare the
ENTM model to a more complex architecture (Diff-ENTM),
which more closely resembles the original NTM but is also
trained with NEAT. Figure [1| shows the differences between
the two models. The Diff-ENTM has a fixed memory size
while the ENTM will expand the memory when addressing
a previously unseen location. While the Diff-ENTM calcu-
lates a weighting over all memory locations determining how
much each location will be effected by the write, the ENTM
writes to a single location and uses an interpolation param-
eter to blend between the current memory content and the



Externjlinput/
ANN

External output

* Write vector

« Write interpolation

* Jump parameter

« Shift (left, stay and right)

Read vector

™

0|00 |07|04] 010

0| 0|O0{(0O1{06fO0]|O0

i

head

(a) ENTM

Externilinput/
ANN

External output

« Erase vector (x1)

« Add vector (x1)

« Content jump key (x2)

Read vector « Content jump strength (x2)

« Content jump interpolation (x2)
« Shift vector (x2)

« Sharpening (x2)

™

00 /[O0(07|04| 0|0

o|O0|O0O]|O01(/06] 01O

Y
head

(b) Diff-ENTM

Figure 1: Evolvable Neural Turing Machines. This figure shows the activation flow between the ANN and the memory
bank for the ENTM and the Dift-ENTM architecture. Extra ANN outputs determine the vector to be written to memory
and the movement of the read and write heads. The ANN receives the content of the current memory location as input at
the beginning of the next time-step. In addition to the NTM specific inputs and outputs, the ANN has domain dependent
actuators and sensors. Notice how the Diff-ENTM head always addresses all memory locations, and has an increased number
of connections from the ANN to the TM compared to the ENTM.

one produced by the previous time-step. Both approaches
allow for shifting and content jumps; however, while they are
part of the weighting calculation for Diff-ENTM, they con-
stitute simple operations to the discrete read/write head in
the ENTM. The Diff-ENTM has read and write performed
by separate heads defined by different control parameters. A
head in ENTM is responsible for both writing and reading,
which reduces the number of parameters significantly.

Experimental Parameters. The size of each popula-
tion is 300. The maximum number of generations is 10,000.
Sexual offspring (50%) does not undergo mutation and asex-
ual offspring (50%) has a 0.6 probability of link weight mu-
tation. The copy task has a 0.05 chance of link addition,
0.02 chance of removing a connection and 0.005 chance of
node addition. For the T-Maze, the chance of link and node
addition is 0.02, and the chance of removing a connection
is 0.05. Connection weights are limited in the range [-10.0,
10.0]. These parameters were found through preliminary ex-
perimentation. All results are averaged over ten independent
evolutionary runs. The ENTM’s source code is available
from the article’s associated website: |http://sebastianrisi.
com/entm/.

5. COPY TASK

In the copy task [5] the neural network has to store and
recall a long sequence of random binary vectors. The net-
work is given a single bit to indicate the start of the exercise,
a sequence of random bit vectors, and a delimiter bit to sig-
nal the beginning of the recall phase. Figure [2| shows this
process in more detail. Before the bit vector sequence is
inputted into the ANN, the ANN is initially activated with

only the start bit set to 1.0. In each following step the ANN
receives a random bit vector as input until a single delimiter
bit signals the end of the stimulation phase and the begin-
ning of the recall phase. Before the recall phase starts, the
network is activated once with only the delimiter flag, which
gives it time to potentially perform a content-jump to the
starting location of the stored sequence in memory.

The fitness of a network is calculated by how well it can re-
call stored sequences. If the produced bit vector has a match
m of at least 25% to the target output, it receives a score of
s = ™=925 The final fitness is calculated by summing over
the scores for each vector. At the beginning of each evolu-
tionary run, 50 separate iterations of sequences with random
lengths between one and ten are generated. During evolu-
tion, each ENTM is evaluated on these 50 sequences to en-
courage solutions that generalize well. We evolved ENTMs
for solving the copy tasks with bit vector sizes of one, two,
four and eight. The memory vector size was set to the bit
vector size plus three extra locations for potential redun-
dancy and control mechanisms that the ENTMs might re-
quire to solve the task. When evolving ANNs for the copy
task, a few settings can modify its complexity:

Bit Vector Size. One such parameter is the number of
bits in each vector, i.e. the number of values that must be
stored in each time-step. Graves et al. work with bit vec-
tor sizes of eight for the copy task, which results in NTMs
with ten input neurons (eight bits for the binary vector to
be stored and two for start and phase change). In our exper-
iments we have tried different element sizes, and generally
the task difficulty and the time needed to evolve a solution
increase quickly with size.
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Figure 2: Copy Task Input Sequence Example. The
network receives a start bit to signal the start of the se-
quence. A delimiter bit after the sequence to be copied,
signals the beginning of the recall phase. The goal in the re-
call phase is to output the sequence in the order it was shown
to the network. In this phase the input consists entirely of
zeros (not shown) to ensure that the complete sequences can
be recalled without assistance.

Sequence Length. Another adjustable parameter is the
length of the sequence that the agent must recall. In the
experiment by Graves et al. the NTMs are exposed to se-
quences of up to length 20 during training. An important
question in this context is if trained networks generalize to
longer sequence lengths than they were trained with. We
evolved the NTMs with random sequences of one to ten el-
ements to avoid possible overfitting to specific lengths (e.g.
learning to count to determine when to start recalling in-
stead of acting on the phase change bit).

Memory Vector. In both ENTM architectures, the size
of the memory vector has to be defined. For the copy task, it
was set to the size of the bit vector plus three extra locations
for possible redundancy and control mechanisms that the
evolved ENTMs might require to solve the task.

Memory Length. The memory tape for the Dift-ENTM
has a fixed length, which has to be set in advance. For the
experiment in this paper is was set to 25, which ensures
fast computations and enough memory capacity to solve the
task. The tape length of the ENTM is theoretically infinite,
and its length does not need to be specified.

Iterations. We have chosen to evaluate each ENTM
on 50 separate iterations of random sequences with vary-
ing lengths. This treatment ensures that evolution does not
optimize towards one specific length but instead discovers a
general solutions.

Initialisation. Through prior experimentation we found
that better solutions were discovered when NEAT starts evo-
lution with initially fully connected ANNs and no hidden
neurons.

5.1 Copy Task Results

The results show that the smaller the bit vector size the
faster evolution finds a solution. The ENTM finds a solution
in nine out of ten runs for the one bit version, in eight runs
for the two bits, fives runs for four bits, and in one run for
eight bits. When successful, the ENTMs solves the one bit
version in 77 generations on average, the two bit version
in 400 generations, and four in 704 generations. The more
complex Diff-ENTM performs significantly worse (p < 0.05
according to the Student’s t-test) and only finds a solution

in a single run for a vector size of one.

The ENTM solutions were tested on their ability to gen-
eralize to sequences longer than those encountered during
evolution. Two champions from the four and eight bit ex-
periments were evaluated on sequences of 10, 20, 50, 100
and 1,000 non-empty bit vectors. In contrast to the results
by Graves et al. [5], the evolved solutions generalize per-
fectly even to very long sequences (Figure ) The ENTM
continually performs a left shift while writing the input to
memory. When reaching the delimiter input it performs a
content-jump to the original position and continues shifting
left while reading the memory back to the output neurons
(Figure 3p).

Because NEAT starts with simple networks and gradually
adds nodes and connections, it is able to discover a sparsely
connected champion network with only a single hidden neu-
ron. This evolved network has a considerably smaller size
than the original NTM, which is fully connected with 100
hidden neurons and a total of 17,162 parameters [5].

6. CONTINUOUS T-MAZE

The T-Maze [13] is often studied in the context of oper-
ant conditioning of animals and therefore makes a good test
domain for architectures involving memory. We tested the
ENTM on two different versions of the T-Maze. The single
T-Maze consists of two arms that either contain a high or
low reward (Figure [4p). The simulated robot begins at the
bottom of the maze and its goal is to navigate to the reward
position. This procedure is repeated many times during the
robot’s lifetime. One such attempted trip to a reward loca-
tion is called a round. When the position of the high reward
sometimes changes, the robot should alter its strategy ac-
cordingly to explore the other arm of the maze in the next
round and remember the new position in the future.

Instead of the traditional discrete grid-world T-Maze that
is popular in this area [13|, the more realistic domain pre-
sented here requires the robot to develop both collision avoid-
ance and the ability to learn during its lifetime in a contin-
uous world. While the continuous single T-Maze is chal-
lenging, it has been previously solved with adaptive neural
networks [13] [11]. To increase the difficulty and potentially
the cognitive reasoning and memory utilization required, it
can be extended to the double T-Maze (Figure [p). In the
double T-Magze the high reward can be in any one of the
four maze ends. Thus finding a low reward does no longer
necessarily indicate the position of the high reward and the
agent needs to learn to explore the maze in a principled way.

The agent has three sensors that measure the distance to
walls, a reward input that is only activated once the agent
reaches either a low (0.1) or high (1.0) reward, and a turn
sensor that is set to 1.0 when the agent is inside a junc-
tion square. The agent is always moving forward at a con-
stant speed of 0.1 squares per time-step. In order to control
the movement, the agent has three steering outputs. The
steering output with the highest activation determines if the
agent rotates 22° to the left, 22° to the right or goes straight.
When the agent reaches one of the goals, it remains at the
goal location for one time-step to receive the collected re-
ward along with the final readings of its rangefinder sensors.
Afterwards the agent is reset back to its starting location
and the next round begins.
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Figure 4: Single and Double T-Maze Layout. The
agent starts in the bottom center of either maze and aims to
find the high reward goal as many times as possible, getting
reset to the start each time a goal is reached. When the
position of the reward sometimes switches, the agents has
to adapt its behavior and ideally explore another arm of the
magze in the next round. Also shown are the agent’s three
rangefinder sensors (a), from which two are pointing at 45°
angles to the sides and one straight ahead.

6.1 Fitness Calculations

The fitness of an agent is calculated as the fraction of
rounds it makes a logically sound decision of which goal to
select. In more detail, exploring unvisited goals will give a
point if the position of the high reward is not yet known.
When the high reward has been located, visiting the maze
end with the high reward gives a point, until the reward is
moved again. The total amount of received points is nor-
malized into the range [0, 1]. The scoring function performs
significantly better (p < 0.01; according to Student’s t-test)
than the fitness function normally employed in the T-Maze
domain, which sums the total reward collected by the agent
during its lifetime.

To avoid the solutions overfitting to some specific scenario
of high reward locations, the agents are evaluated on a series

of deployments, which consists of a set of rounds (10 rounds
for the single T-Maze and 20 for the double T-Maze). Be-
fore each new deployment the agent’s network and memory
are reset to their initial state. In each deployment the po-
sition of the reward is only switched once after around half
the number of total rounds (+15% uniformly randomly se-
lected). Agents are evaluated on their abilities to generalize
to multiple switches after training.

In the single T-Maze the agent is deployed twice, with the
high reward starting on the left in one deployment, and on
the right in the other. In the double T-Maze the agent is
deployed 12 times; there are four possible high reward start
locations and from each of those four, the high reward has
three locations to switch to.

The memory vector size is set to two, which is large enough
to potentially allow for key/value like usage or storage of a
value for each goal in a single memory location.

6.2 Single T-Maze Results

Both ENTM and Diff-ENTM found a solution (a network
that requires minimal exploration when the reward switches)
in all ten runs (Table . The ENTM approach took on av-
erage 87 generations (o = 40), and Diff-ENTM 399 genera-
tions (¢ = 347) to find a solution (Figure [5h). This differ-
ence is significant (p < 0.05 according to Student’s t-test).

6.3 Double T-Maze Results

The ENTM approach was able to find a solution to the
double T-Maze in two out of ten runs. None of the ten
Diff-ENTM runs found a solution within the limit of 10,000
generations (Table. Figure shows average performance
over generations for both methods. While solutions for the
single T-Maze were generally found within 90 generations,
the double T-Maze is solved in two instances after 3,633 and
9,710 generations. A video of a solution network in action
can be found at: http://sebastianrisi.com/entm/.

Table [2] demonstrates the generalization abilities of a dis-
covered champion network. The network sequentially ex-
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Table 1: Solution Count. Results from evolving ENTMs
on the single- and double T-Maze. The number of discovered
solutions (networks that requires minimal exploration when
the reward switches, corresponding to a fitness of 1.0) are
shown together with the average number of generations it
took to reach those solutions.

Test Solutions | Avg. gen SD
Single TM ENTM 10 87 40
Single TM Diff-ENTM 10 399 347
Double TM ENTM 2 6,672 | 4,297
Double TM Diff-ENTM 0 NA NA

Table 2: Behaviour of a Solution Network Explor-
ing the Double T-Maze. This table shows the location
of the high reward in each round and the location the agent
explores. In this example, the high reward starts at loca-
tion 3 (bottom left), and the agent explores the three other
locations before finding it. Once it finds the reward the
agent displays an exploitative strategy and always navigates
to the bottom left maze end, until the position of the re-
ward changes again and the agent resumes its explorative
strategy.
[ Round [ 1 [2[3J4[5[]6[7[]8]9T]10]
High | 3 3 3 3 3 3 3 3 3 3
Reward

Chosen | 4 2 1 3 3 3 3 3 3 3
Location

Round | 11 | 12 | 13 | 14 | 15 [ 16 | 17 | 18 | 19 | 20

High 3 3 3 2 2 2 2 2 2 2
Reward
Chosen 3 3 3 3 4 2 2 2 2 2
Location

plores the maze until it finds the high reward, at which
point it always returns to the correct high reward location.
In order to evaluate how well the champions generalize to
situations in which the high reward goal switches positions
multiple times, we increase the number of rounds to up to 90
and a total of five switches. The results averaged over 20,000
randomly chosen switch points and reward starting position
show that the ENTM champions generalize perfectly, reach-
ing the maximum fitness each time.

6.4 Memory Usage

To get an understanding of how the evolved ENTMs solve
the T-Mazes, we analyzed the behaviors of the champion
networks for both the single and double T-Maze.

Figure [6] shows the memory access of a solution for the
single T-Maze. The agent uses a single memory location that
it writes to at the end of a round and reads the value back
from when the next round starts. If the agent collects a high
reward it writes a low value to the memory location, which
does not change its behavior in the next round. However, if
the agent collects the low reward, a high value is written to
memory, which allows the agent to adapt and now turn left
instead of right at the junction.

The champion network for the double T-Maze task is
shown in Figure [8] The NTM almost consistently writes
discrete binary values to memory, and specifically at the mo-
ment when it receives the reward at the end of the maze. An-
alyzing the values written to memory shows that the NTM
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Figure 5: Average and Best Performance over Gen-
erations. The average best fitness over generations to-
gether with the fitness of the champion network is shown
for the ENTM and Diff-ENTM approach. Note that the
maximum generations shown vary between plots.

discovered an interesting strategy (Table [3). Each of the
four maze ends is encoded with a unique binary represen-
tation (e.g. (0, 0) represents the bottom left maze end). If
the agent collects the low reward it writes the values for the
next location to memory, while it writes the values for the
current location if it finds the high reward.

An example of eight rounds in the double T-Maze, in
which the high reward switches after five rounds is shown in
Figure m The memory vector read at the beginning of each
round determines which maze end the agent will go to next.
The agent is always exploring the maze in the following se-
quence, until it has found the reward: bottom right — top
left — bottom left — top right — bottom right — etc.

Since the evolved NTM overrides the memory shortly after
the round starts, the ENTM is utilizing the memory as a
communication mechanism between rounds, similarly to the
communication task described by Lehman et al. [7]. The
memory content read at the beginning of each round alters
the initial conditions of the ENTM and therefore the agent’s
initial move. The slight differences in starting conditions
then determine which target goal the agent will navigate to
(i.e. during navigation itself the memory does not seem to
play an important role).

7. DISCUSSION

Graves et al. trained fully connected NTMs with 100 hid-
den neurons to solve the copy task, and achieved good re-
sults when training it on sequences of up to length 20. The
ENTM champion network evolved in this paper is signifi-
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Figure 6: Single T-Maze Solution. The graph shows
the values written to and read from memory by a ENTM
solution during three consecutive rounds. The high reward
goal is located to the right for round one and to the left
for rounds two and three. The ENTM never performs a
shift or content-jump and only uses one memory location.
In the first round the agent turns right and collects the high
reward. Notice how the ENTM writes a low (red) value at
the end of round one (point a), which is read back again
at the beginning of round two (point b). In round two it
performs another right turn, this time encountering a low
reward which results in a higher value (blue) being written
to memory (point ¢). This value is read back at the start of
round three (point d), which enables the ENTM to change
its behavior and now turn left at the junction.

cantly smaller, sparsely connected and contains only a sin-
gle hidden neuron. Because the chosen neuroevolution ap-
proach NEAT start small and incrementally complexify over
generations, it often discovers solutions with the minimum
complexity. Importantly, the solution found by evolution
generalizes perfectly to longer sequences. This indicates that
neuroevolution can be a complementary approach to train-
ing NTMs that can sometimes even outperform a gradient
descent method on a supervised task.

There are some notable difference between the memory
vectors in our setup and the original NTM. Graves et al.
uses memory vectors of size 20, while the size of the memory
vectors in this paper is set to the size of the bit vector (e.g.
4, 8) plus three extra locations. While this could potentially
limit the type of solution that are possible, it makes all ac-
cesses and manipulations of the memory faster and reduces
the number of ANN parameters.

In each activation in which the Diff-ENTM network in-
teracts with the memory bank, the read and write heads
perform many operations and as the number of memory ac-
cesses increase, they become computationally expensive. A
Diff-ENTM write-head accesses all memory locations a total
of three times when writing a value, and a read head two
times when reading. In comparison, the unified read/write
head of the ENTM only access all memory locations a single
time, and only does so when the agent decides to perform a
content jump. The memory address shifting mechanism of
the Dift-ENTM uses a circular convolution to move the pre-
viously calculated attention weights. This operation requires
accessing the weight associated with each memory location,
as many times as the size of the kernel used for shifting.

Sensors
Reward

Sensors
Reward

Table 3: Double T-Maze Memory Encoding. This
figure shows the binary key w the ENTM champion writes
to memory for selecting what goal to visit in the next round.
If the agent collects the high reward it writes the key of the
current maze end, otherwise it writes the key for the next
maze end in the sequence shown here. The values in memory
are real numbers, but the champion consistently writes 0.0
or 1.0 in memory when reaching a goal.

wl | w2 | Target Goal
1 0 | Bottom Right
1 1 | Top Left
0 0 | Bottom Left
0 1 | Top Right

TM read at
round start

Highreward 3 3 3 3 3 2 2 2

Chosengoal 4 2 1 3 3 3 4 2

Figure 7: Double T-Maze Memory Usage. Visualiza-
tion of the memory usage of the Double T-Maze champion.
The red and blue squares show the values read from mem-
ory at the start of each round, and the high reward goal
and chosen goal below. Notice how the memory value read
determines which goal is chosen. In this depiction the maze
locations are shown as: 1 = top right, 2 = top left, 3 =
bottom left, 4 = bottom right.

Both read and write heads can perform address shifting,
and the same amount of operations are performed, even if
the result of the shift operation is to stay at the current lo-
cation. Address-shifting the ENTM head is a constant-time
operation, as only the single addressed index value is up-
dated when shifting. In total, a single activation of the Diff-
ENTM, with one read head, one write head and the ability
to shift one position to the left or right, requires ~ 13 ac-
cesses of all memory locations every activation, whereas the
ENTM only access all locations a single time and only when
addressing content. During evolution these differences have
the effect that a single generation of the Diff-ENTM gener-
ally takes 3—4 times as long as generations with the ENTM.
These results demonstrate that the simpler ENTM is a sub-
stantial improvement in terms of time consumption, which
is important in the case of evolutionary-based algorithms.
For example, in our current setup, evolving ENTMs with
NEAT for 10,000 generations in the double T-Maze takes
around 12 hours to complete on a standard PC.

To the best of our knowledge, the continuous double T-
Maze has not been solved before, which suggests that the
ENTM approach is a viable and promising addition to the
existing methods for adaptive ANNs. In fact, Blynel et al.
[1] attempted to solve the continuous double T-Maze with
a recurrent network but were not able to evolve a network
that could deal with reward-switching. The ENTM solution
for the double T-Maze seems to have an internally encoded
order of exploring the four branches of the maze. Once the
end of the maze is reached, the agent uses the memory as
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Figure 8 ENTM Solution Network for the Double
T-Maze. The figure shows all connections to each output
neuron in the network. Each connection is visualized as a
circle with the name of the outgoing node in the center,
and the connection’s weight in the lower right corner. The
background colour of the circle is blue for T-Maze nodes, red
for TM nodes, and white for the bias node. The ANN inputs
are the three rangefinders left (L), right (R) and straight (.5),
a reward sensor (G), a turn sensor (7"), two for memory read
access (1 and 2) and a bias. Connections with an absolute
weight of less than one have been omitted.

a way to “communicate” with itself at the beginning of the
next round. While it discovered an interesting strategy, it
did not take full advantage of the ENTM’s ability to store
long sequences, as was shown possible in the copy task.

While evolution discovered two solutions for the double T-
Maze, in the future it will be important to devise a reward
scheme to find them more consistently. Especially tasks in-
volving cognitive behaviors and adaptation have shown to be
very deceptive for objective-based search methods |7} (9} 12]
and benefit from more explorative search methods such as
novelty search |8]. Therefore, evolving ENTM through nov-
elty search could make the discovery of cognitive behaviors
more likely.

Now that a reliable persistent memory is in place that
can store information for prolonged periods of time, it will
be interesting to see which complex cognitive tasks might
be solvable. Especially tasks that could not be solved with
existing recurrent- and plastic neural network architectures
might now come into reach.

8. CONCLUSION

This paper introduced an evolvable version of the recently
introduced Neural Turing Machine. On a simple copy task,
the ENTM shows better generalization capabilities than the
original gradient descent based NTM and is able to perfectly
remember arbitrarily long sequences of up to eight bits. Ad-
ditionally, the ENTM is able to evolve a controller that can
solve the continuous version of the double T-Maze problem.
In the future it will be interesting to extend this approach
to more complex domains that require deeper reasoning and
larger neural structures.
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