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Figure 1: Overview of the proposed approach. First, modules are assembled (or auto-assemble) into a shape. Then, the NCA inside each
module starts the self-discovery phase, aimed at recognizing the shape of the assembly, by exchanging information with adjacent modules.
When the NCA has reached a decision on the shape it believes to be part of, the module selects accordingly the neural controller parameters
𝜽 to be used, from a library of pre-evolved vectors of parameters. Finally, the robot performs its task, with each module using its own 𝜽
selected in the self-discovery phase. In all phases, the modules are completely independent, but act collectively for achieving a common goal.

ABSTRACT
Modular robots are promising for their versatility and large design
freedom. Modularity can also enable automatic assembly and recon-
figuration, be it autonomous or via external machinery. However,
these procedures are error-prone and often result inmisassemblings.
This, in turn, can cause catastrophic effects on the robot function-
ality, as the controller deployed in each module is optimized for a
different robot shape than the actual one. In this work, we address
such shortcoming by proposing a shape-aware modular controller,
operating with (1) a self-discovery phase, in which each module
controller identifies the shape it is assembled in, followed by (2) a pa-
rameter selection phase, where the controller selects its parameters
according to the inferred shape. We deploy a self-classifying neural
cellular automaton for phase (1), and we leverage evolutionary op-
timization for implementing a library of controller parameters for
phase (2). We test the validity of the proposed method considering

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’23, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0119-1/23/07. . . $15.00
https://doi.org/10.1145/3583131.3590419

voxel-based soft robots, a class of modular soft robots, and the task
of locomotion. Our findings confirm the effectiveness of such a
controller paradigm, and also show that it can be used to partially
overcome unforeseen damages or assembly mistakes.
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1 INTRODUCTION
Being able to determine one’s shape would be an incredibly use-
ful ability for many robot applications. Especially modular robots,
whose configuration might be changed voluntarily or through dam-
age, could benefit from knowing their overall composition, either
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to repair damage, or to determine which compensatory behavior
to execute.

While previous approaches have allowed robots to adapt by
learning a repository of behaviors that could be used in response to
damage [20], they did not try to determine the shape of the robot—
which could speed up adaptation—but instead relied on an iterative
trial-and-error approach. The work by Bongard et al. [4] explored
enabling a robot to create a model of itself, but relied on actuating
the robot to determine its morphology; depending on the type of
damage or robot, self-modeling through actuation-sensation might
not always be feasible.

Building on the ability of many biological systems that can cor-
rectly determine their own anatomically structure solely through
the local interaction of cells, we present an approach that allows
modular soft robots to infer their shape without the need for ac-
tuation or trial-and-error methods. Our approach builds on re-
cent work in shape classification through neural cellular automata
(NCA) [26, 31] and in collective control of modular robots [8, 22, 25].
Every module in the robot is running a copy of the same NCA that
tries to determine which morphology it is part of through local
communication. Based on the inferred shape, every module then
sets the parameters of an embedded neural controller and thus the
behavior that should be executed.

Our results demonstrate that: (a) NCA are able to accurately infer
the shape of different soft robots that they are a part of, (b) this
ability can be used to efficiently select controller parameters from
a pre-evolved library that allow the robots to locomote, and (c) the
approach enables our modular soft robots to deal with assembly
inaccuracies and online damages. Because of its completely de-
centralized nature, the approach naturally lends itself to being
deployed in modular robots in the real world in the future, opening
up interesting new possibilities for more resilient physical robots.

2 RELATEDWORKS
In the recent years, there has been increasing interest in making
robots more resilient [33], with the eventual aim of making them
more useful in practice. Resiliency can be pursued in many ways,
ranging from self-healing materials [3, 14] to the robots ability to
recover from damage. Damage recovery, in turn, can be achieved by
trying to adapt the body of the robot (e.g., by regrowing damaged
parts) or, as done in this paper, by using compensatory behaviors.
We discuss related works relevant to both approaches.

Shah et al. [28] provided an overview on methods and applica-
tions related to the ability of a robot to change its shape. There
are a few works in which shape change has been used to cope
with damages. Kriegman et al. [13] considered voxel-based soft
robots and faced damages changing the relative size and shape of
voxels. Horibe et al. [11], instead, used NCA to regrow body parts
when damaged, working with the same kind of robots. However,
the morphological adaption approach to damage recovery has its
limitations, especially when considering real world applications.
Indeed, current robots lack the ability to regrow parts to overcome
damages.

The alternative approach is to adapt the controller of the robot
in response to morphological damage. In [4], a four legged robot
infers its own structure through a sensor system and then uses

this self model to generate a controller for forward locomotion.
Therefore, when the robot is damaged, it is capable of creating a
new self model and generating a new controller. In [5] the original
controller of the robot is altered by an “intelligent trial-and-error”
algorithm until a new successful controller is found for use on the
damaged robot. In contrast to the previously mentioned works, our
approach is completely decentralized. In principle, decentralization,
together with the ability to re-use exhausted robot modules and
auto-fabrication, is an enabling factor for an ecosystem of robots
that adapt over time [9].

3 BACKGROUND
3.1 Voxel-based Soft Robots
We deal with voxel-based soft robots (VSRs), a kind of modular
robots composed of several soft elastic cubes (voxels) which are
rigidly linked together in a predefined shape. Namely, we consider
the 2-D variant of simulated VSRs proposed in [16] that attempts to
mimic their real fabricable counterpart, initially devised by Hiller
and Lipson [10]. In this 2-D variant, VSRs are composed of equally
sized squares, rather than cubes. Their simulation is performed in
discrete time and continuous space.

The movement of a VSR is the result of the change of the area
of its voxels over time. In turn, the area of each voxel changes as
the consequence of (a) external forces acting on the voxel, namely,
gravity and reaction forces deriving from the contact with other
bodies, and (b) an internal force dictated by an actuation value.
More precisely, we denote by 𝑎 (𝑘 ) ∈ [−1, 1] the actuation value
for a voxel at time step 𝑘 , with −1 corresponding to the maximum
dictated expansion and 1 corresponding to the maximum dictated
contraction. In practice, the simulator models contraction and ex-
pansion of the voxels as instantaneous changes of the rest lengths
of several spring-damper systems composing their structure; at the
same time, spring-damper systems confer softness to the voxels.
We refer the reader to [16] for further details about the mechanical
models of the VSR.

Formally, a VSR is defined by a shape and a controller. The shape
is a Boolean𝑤 ×ℎ grid in which the element at cell 𝑥,𝑦 is true if and
only if there is a voxel at the corresponding position. The controller
determines the actuation value 𝑎 (𝑘 )𝑥,𝑦 for each voxel of the VSR at
each time step 𝑘 .

In this study, we use the distributed neural controller proposed
in [15] and later refined in [22]. For each voxel, it determines the
actuation value based on some sensory inputs acquired at the voxel
and some communication values coming from the adjacent voxels,
which generated them at the previous time step. The processing of
inputs and communication values is performed by a feed-forward
artificial neural network (NN) embedded in the voxel.

In detail, at each time step 𝑘 and for each voxel at (𝑥,𝑦) we first
take the local sensor reading 𝒓 (𝑘 )𝑥,𝑦 and the communication values
computed at the previous time step 𝑘 − 1 by the adjacent voxels
𝑐
(𝑘−1)
𝑥,𝑦−1 , 𝑐

(𝑘−1)
𝑥,𝑦+1 , 𝑐

(𝑘−1)
𝑥+1,𝑦 , and 𝑐 (𝑘−1)𝑥+1,𝑦 . Then, we use the NN to compute

the actuation value 𝑎 (𝑘 )𝑥,𝑦 and the communication value 𝑐 (𝑘 )𝑥,𝑦 to be
passed to adjacent voxels at the next time step as:[

𝑎
(𝑘 )
𝑥,𝑦 𝑐

(𝑘 )
𝑥,𝑦

]
= NN𝜽

( [
𝒓 (𝑘 )𝑥,𝑦 𝑐

(𝑘−1)
𝑥,𝑦−1 𝑐

(𝑘−1)
𝑥,𝑦+1 𝑐

(𝑘−1)
𝑥+1,𝑦 𝑐

(𝑘−1)
𝑥+1,𝑦

] )
, (1)
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where 𝜽 ∈ R𝑝 is the vector of the parameters (or weights) of the
NN. If no adjacent voxel is present in a given direction, we set the
corresponding communication value to 0 in the NN input.

We use the same NN architecture, the same activation function
(tanh), and the same parameters 𝜽 in each voxel. Precisely, we use
a single hidden layer of 5 neurons that, between the input layer of
8 neurons and the output layer of 2 neurons, results in an NN with
𝑝 = |𝜽 | = (8 + 1) · 5 + (5 + 1) · 2 = 57 weights.

The local sensor reading 𝒓 (𝑘 )𝑥,𝑦 ∈ [−1, 1]4 consists of: (a) the ratio
between the current area of the voxel and its rest area, (b) the
distance to the closest body along the negative 𝑦-axis (i.e., “below”
the voxel, integral with the voxel), and (c) the velocities of the
center of mass of the voxel along the 𝑥- and 𝑦-axes (integral with
the voxel). For the area ratio, we first clip the value in [0.5, 1.5],
then we normalize it to [−1, 1]. For the distance, we first cap it to
0.5, such that the raw sensed value is in [0, 0.5], then we normalize
it to [−1, 1]; we remark that other voxels of the VSR are sensed, i.e.,
voxels with another voxel attached below always read a distance
of 0 corresponding to a normalized value of −1. For the velocities,
we first clip them to [−10, 10], then we normalize them to [−1, 1].
For reference, the side of the voxel is 1m and the velocity range is
expressed in m s−1.

Despite its apparent simplicity, in particular, despite adopting the
same NN in each voxel, the distributed neural controller has been
shown to be effective for controlling VSRs, also in the challenging
case where they change shape over their life [21]. In practice, the
exchange of communication values among voxels with a delay of
one time step makes the compound of all the NNs a recurrent NN,
which, with the proper parameters, can generate rich dynamics and,
hence, effective behaviors. However, it turns out that such richness
often results, upon optimization, in vibrating behaviors [17] that
would be poorly effective in reality—an instance of the so-called
reality gap problem [20, 27, 30]. For this reason, we actually com-
pute the actuation values at a lower frequency than the simulation
frequency, namely at 5Hz rather than 60Hz, as done in [19]; in
between computations, we apply the lastly computed actuation
value for each voxel.

A peculiarity of the distributed neural controller, which we ex-
ploit in this study, is that it realizes a form of collective intelli-
gence [22]: the overall behavior of the VSR results (also) from the
communications exchanged between the NNs embedded in the vox-
els which are, however, independent from each other. In practice,
one can replace one NN in a voxel with a different NN with the
same input and output size and the VSR is still functional, i.e., it can
behave, tough its behavior might be different from the one obtained
with the “original” NN. As we will see in Section 4.3, we exploit
this possibility to inject in some voxels the NNs that have been
optimized for a different shape than the one the affected voxels
belong to.

3.2 Neural cellular automata
The shape detection part of our system is based on the concept of
cellular automata (CA). CA consist of “cells” arranged into a grid.
Each cell state updates according to the states of the neighboring
cells and a set of rules, the same for all the cells within the grid.
A classic example of CA is Conway’s game of life: in this simple

Set Morph. 𝑤×ℎ 𝑛 𝑣★𝑥 𝑔80 Evol.

𝐶1, 𝐶2, 𝐶3, 𝐶4 4×3 10 3.5 ± 0.2 29 ± 25
𝐶1, 𝐶2, 𝐶3, 𝐶4 5×2 10 1.0 ± 0.5 37 ± 37
𝐶1, 𝐶2, 𝐶3, 𝐶4 7×2 11 1.9 ± 0.2 30 ± 15

𝐶2, 𝐶4 4×2 6 2.2 ± 0.1 43 ± 16
𝐶2, 𝐶4 4×1 4 0.7 ± 0.2 14 ± 39
𝐶2, 𝐶4 5×2 8 1.5 ± 0.1 34 ± 7
𝐶2, 𝐶4 6×4 20 2.2 ± 0.3 54 ± 24
𝐶2, 𝐶4 8×3 24 1.4 ± 0.3 36 ± 27
𝐶2, 𝐶4 9×3 23 2.3 ± 0.7 31 ± 3
𝐶3, 𝐶4 4×3 9 3.9 ± 0.2 26 ± 8
𝐶3, 𝐶4 4×3 9 3.6 ± 0.3 31 ± 9
𝐶3, 𝐶4 4×3 9 3.7 ± 0.2 27 ± 4
𝐶3, 𝐶4 4×3 9 2.2 ± 0.3 79 ± 22
𝐶3, 𝐶4 5×2 9 0.9 ± 0.7 20 ± 33
𝐶3, 𝐶4 5×2 9 1.7 ± 0.5 29 ± 16
𝐶3, 𝐶4 5×2 9 1.6 ± 0.3 42 ± 28
𝐶3, 𝐶4 5×2 9 1.2 ± 0.2 48 ± 50
𝐶3, 𝐶4 7×2 10 1.9 ± 0.4 47 ± 20
𝐶3, 𝐶4 7×2 10 1.5 ± 0.5 56 ± 27
𝐶3, 𝐶4 7×2 10 2.2 ± 0.4 16 ± 9
𝐶3, 𝐶4 7×2 10 1.7 ± 0.4 55 ± 25
𝐶4 4×2 5 3.5 ± 0.1 17 ± 5
𝐶4 4×2 5 1.3 ± 0.6 82 ± 32
𝐶4 3×1 3 0.3 ± 0.1 15 ± 13
𝐶4 5×2 7 1.8 ± 0.1 32 ± 14
𝐶4 5×2 7 2.2 ± 1.0 47 ± 19
𝐶4 5×2 7 1.6 ± 0.3 105 ± 53
𝐶4 6×4 19 2.5 ± 0.5 55 ± 11
𝐶4 6×4 19 2.1 ± 0.3 41 ± 31
𝐶4 6×4 19 3.0 ± 0.1 30 ± 7
𝐶4 6×4 19 2.3 ± 0.6 58 ± 16
𝐶4 8×3 23 1.5 ± 0.1 28 ± 17
𝐶4 8×3 23 1.8 ± 0.1 49 ± 22
𝐶4 8×3 23 1.6 ± 0.2 33 ± 15
𝐶4 8×3 23 0.9 ± 0.3 12 ± 27
𝐶4 9×3 22 2.7 ± 0.6 25 ± 14
𝐶4 9×3 22 2.5 ± 0.4 35 ± 10
𝐶4 9×3 22 2.3 ± 0.2 33 ± 18
𝐶4 9×3 22 2.7 ± 0.1 20 ± 7

Table 1: Salient information about the VSR shapes and
the outcome of the evolutionary optimization of their con-
trollers. The rightmost column shows an overview of the
evolution: the orange line shows the fitness 𝑣𝑥 of the best in-
dividual along generations; for reference, the gray line shows
its average across all shapes. For shapes derived from others,
i.e., those belonging to sets 𝐶3 \𝐶1 and 𝐶4 \𝐶2, the green line
shows the evolution of 𝑣𝑥 for the original shape (e.g.,
derives from ).
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example, the state of each cell is a Boolean and is updated according
to four simple rules.

Neural cellular automata (NCA) are an extension of CA. Whilst
the cells are still arranged within a grid, the state of a cell can now
be represented by a real valued vector. Instead of simple hand coded
rules, the rules governing cell updates are functions parameterized
by an NN [24, 26, 31].

Recently, NCA have been used for performing shape detection
or classification. Two approaches that are particularly relevant for
this work are those of Randazzo et al. [26] and of Walker et al. [31].
In the former, NCA are trained to be capable of self-classifying
MNIST digits (handwritten numbers) irrespective of the digit shape
or size. In the latter, which is the main inspiration behind this work,
NCA are trained for 2-D shape classification, and are also physically
realized in a 2-D static robotic system.

4 EVOLVING SHAPE-AWARE CONTROLLERS
The shape-aware controller is composed of three core elements:
(1) an NCA for shape self-classification, (2) a library of controller
parameters realized with evolutionary optimization, and (3) the
actual controller which combines the former two. We detail the
internals of each component in the following.

4.1 NCA for shape self-classification
For the shape detection component we rely on the approach to self-
classification proposed by Walker et al. [31], based on NCA. In this
framework, the classification is the result of the update over time
of the cell state, thanks to an update function and the information
shared with neighbors. In turn, the NCA cell state plays a two-fold
role, storing information to be passed to neighbors, and encoding
the current guess w.r.t. the self-classification.

More in detail, we represent the state of each NCA cell as a real-
valued vector of size 𝑛𝒔 . We initialize the state vector of each cell
at 𝑥,𝑦 with zeros, 𝒔 (0)𝑥,𝑦 = 0 ∈ R𝑛𝒔 , with the exclusion of the first
component, which we set to 1 to indicate the presence of an “active”
NCA cell. Then, we iteratively update the state of the cell as:

𝒔 (ℎ)𝑥,𝑦 = 𝒔 (ℎ−1)𝑥,𝑦 + CNN𝝊

©­­­­­­­«



0 𝒔 (ℎ−1)𝑥,𝑦−1 0

𝒔 (ℎ−1)𝑥−1,𝑦 𝒔 (ℎ−1)𝑥,𝑦 𝒔 (ℎ−1)𝑥+1,𝑦

0 𝒔 (ℎ−1)𝑥,𝑦+1 0



ª®®®®®®®¬
, (2)

where ℎ indicates the update time step and CNN𝝊 is the update
function, a convolutional neural network (CNN) parametrized by
𝝊 . Here, we employ the Von Neumann neighborhood, i.e., the 4
directly adjacent neighbors, and the cell itself as input to the CNN,
padding the corner elements with zero vectors 0 ∈ R𝑛𝒔 to obtain
a 3 × 3 × 𝑛𝒔 tensor. We use the same padding technique in case of
missing neighbors, i.e., on the borders of the shape.

We adopt a CNNwith 3 layers: the first layer uses a 3×3 convolu-
tion with𝑛𝑐,0 channels and a Rectified Linear Unit (ReLU) activation
function, the second layer employs a single 1 × 1 convolution with
𝑛𝑐,1 = 𝑛𝑐,0 channels and ReLU, while in the last layer we have a
linear 1 × 1 convolution with 𝑛𝑐,2 = 𝑛𝒔 channels, as the amount of
channels in the output layer needs to match the cell state size 𝑛𝒔 .

For the classification task, we consider the argmax over the last
|𝐶 | channels of the cells state, where |𝐶 | < 𝑛𝒔 is the cardinality of
the set of shapes 𝐶 , i.e., classes, employed. The argmax holds the
(index of the) shape predicted by the NCA. Clearly, the inference,
i.e., the classification, phase in the self-classifying NCA is guided
by the cells state updates over time. Thus, it cannot be performed
instantaneously, but actually requires a certain amount of update
steps to be performed to allow enough information exchange be-
tween cells.

We train the self-classifying NCA, i.e., we optimize its param-
eters 𝝊 , using Stochastic Gradient Descent (SGD) and the Adam
optimizer [12]. We aim at minimizing a loss defined as

LNCA (𝜐) =
|𝐶 |∑︁
𝑗=1

ℎ𝑓∑︁
ℎ=ℎ𝑖

∑︁
(𝑥,𝑦) ∈𝑐 𝑗

1
|𝑐 𝑗 |




𝒔 (ℎ)last,𝑥,𝑦 − 𝒄 𝑗



2 , (3)

where |𝐶 | is the number of shapes employed, ℎ𝑖 and ℎ𝑓 are the
initial and final update steps considered, respectively, 𝑐 𝑗 is the set
of the 𝑗-th shape cells coordinates, 𝒔 (ℎ)last,𝑥,𝑦 is the vector of the last

|𝐶 | elements of the vector state 𝒔 (ℎ)𝑥,𝑦 of cell at 𝑥,𝑦 at time step ℎ, 𝒄 𝑗
is the one-hot encoded class label, and ∥·∥ indicates the Euclidean
norm.We take inspiration from [31] for the loss definition. However,
we slightly alter the original loss concerning the number of updates:
instead of applying a random number of update steps and taking
the final classification outcome, here we update the NCA for a fixed
amount of steps ℎ𝑓 , and we consider all the outcomes achieved
starting from ℎ𝑖 steps. This way we promote convergence and
stability in the NCA.

4.2 Controller library evolution
As seen in Section 3.1, we rely on NNs inserted within voxels to
control VSRs. When we handcraft a VSR by assembling individual
voxels into a given shape, we equip all of them with the same NN
parameters 𝜽 . Clearly, it is advisable to use the parameters 𝜽★𝑖 which
best control the ensemble of voxels assembled in a certain shape
𝑐𝑖 . Here, given a set of shapes, we want to draw a correspondence
from each shape 𝑐𝑖 to its optimal NN parameters 𝜽★𝑖 , practically
realizing a library of optimized controllers: we will then use the
NCA to tell what is the shape of the “current” robot and, hence, to
choose the corresponding optimal NN parameters from the library.

For building the library, we resort to evolutionary computation
for finding the optimal NN parameters 𝜽★𝑖 for each controller, as
previously done in [15] for the same case study. More in details, we
rely on a simple form of evolutionary strategy (ES) for addressing
the optimization problem. As we can see in Algorithm 1, we evolve
a population of fixed size 𝑛pop for a total of 𝑛gen generations. At
each generation, we select the parents as the top forth of the current
population, and we compute their offspring by adding a Gaussian
mutation of parameters 𝑁 (0, 𝜎2) to their point-wise mean. We use
elitism: at each generation we retain the current best individual,
while we replace all remaining individuals with the newly generated
offspring.

In order to realize a controller library, we optimize 𝜽 𝑖 for every
VSR shape 𝑐𝑖 with Algorithm 1. To evaluate the quality of each
configuration 𝜽 𝑖 , i.e., its fitness, we deploy an NN controller with
𝜽 𝑖 in the voxels of a VSR of shape 𝑐𝑖 , and we evaluate its degree of
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1 function evolve():
2 𝑃 ← ∅
3 foreach 𝑖 ∈ {1, . . . , 𝑛pop} do
4 𝑃 ← 𝑃 ∪ {0 +𝑈 (−1, 1)𝑝 }
5 end
6 foreach 𝑔 ∈ {1, . . . , 𝑛gen} do
7 𝑃parents ← bestIndividuals

(
𝑃,

⌊ |𝑃 |
4

⌋ )
8 𝝁 ← mean(𝑃parents)
9 𝑃 ′ ← {bestIndividuals(𝑃, 1)}

10 while |𝑃 ′ | < 𝑛pop do
11 𝑃 ′ ← 𝑃 ′ ∪ {𝝁 + 𝑁 (0, 𝜎2)𝑝 }
12 end
13 𝑃 ← 𝑃 ′
14 end
15 return bestIndividuals(𝑃, 1)
16 end
Algorithm 1: The simple ES used for optimizing the NN
parameters for each shape.

accomplishment of a certain task. Here we consider locomotion as
task, where the goal of the VSR is to move as fast as possible along
the positive 𝑥 direction. Hence, we use the velocity 𝑣𝑥 measured in
one simulation as the fitness of the agent, which we aim at maxi-
mizing. Trivial though it may seem, this task is the most common
one in evolutionary robotics, and it is used as it can be a simple yet
general enough task to evaluate an artificial agent.

4.3 Shape-aware controller
The actual shape-aware controller combines the elements described
in Sections 4.1 and 4.2 to recognize the shape of the VSR and select
the most appropriate parameters for it. Namely, we can distinguish
two operating phases: (1) the self-classification with the NCA and
(2) the controller parameters selection from the library. Once the
controller parameters are selected, the controller determines the
robot behavior that attempts to accomplish the given task.

The initial phase relies of the self-classifying NCA. Right after
assembly, the NCA within all modules synchronously update for
a total of 𝑛𝑢 steps according to Equation (2). This phase could be
triggered by an external signal to ensure proper synchronization
among voxels, although synchronism and determinism could also
be sacrificed without significant performance loss, as seen in [31].
After 𝑛𝑢 update steps, every NCA has self-classified the shape it
belongs to, and the outcome can in principle differ from voxel to
voxel.

At this point, the parameter update phase starts. For each voxel
the outcome of the local classification into shape 𝑐𝑖 determines the
parameters 𝜽★𝑖 to be chosen from the previously optimized library.
Hence, the controller for said voxel becomes NN𝜽★

𝑖
, and the voxel

within the VSR immediately starts its actions under its control.
We remark that since the classification outcomes may differ

within the assembled VSR, also the controllers deployed in indi-
vidual voxels may be different. As this is often not a desirable
condition, it is possible to add an optional majority voting phase
prior to the controller selection, to ensure global agreement and

homogeneity. The majority voting remains fully compatible with
modularity: in fact, several algorithms for reaching distributed con-
sensus exist [32]. Here we provide a simple implementation which
only requires each voxel to have a unique identifier and to store
and propagate its vote and all the received ones relying on a table
(id, 𝑣), id being the voxel unique identifier and 𝑣 the corresponding
vote. At each time step, such table is passed on to the neighbors,
and is updated merging it with the ones received by adjacent voxels.
This takes 𝑂 (𝑛) steps to converge, 𝑛 being the amount of voxels
involved, and can be automatically stopped either when the tables
are not updated anymore or with a external trigger.

5 EXPERIMENTAL EVALUATION
In our experimental evaluation we aimed at addressing the follow-
ing research questions:
RQ1 Is the shape-aware controller effective? Does its effectiveness

vary with the amount of shapes included in the library?
RQ2 How does the effectiveness of the controller depend on the

NCA hyper-parameters? Is it possible to shrink the CNN in
the NCA within it while retaining its original capability? Is
it robust w.r.t. the number of state updates performed for
self-classification?

RQ3 Is the shape-aware controller a viable approach to tackle
unforeseen assembly inaccuracies? In other words, what
happens if the final shape does not belong to the controllers
library?

For answering these questions, we performed several experi-
ments in different conditions. Namely, we considered a total of 39
VSR shapes, which we organized into 4 sets of increasing size for
training the self-classifying NCA. We evaluated the performance
of the shape-aware controller by comparing the results it achieved
with those obtained with the correct controller for each shape.
We also repeated our assessment changing the NCA parameters,
namely the CNN size and the amount of update steps. Last, we
tested the behavior of the shape-aware controller on unseen shapes
to assess its applicability for reacting to unforeseen mistakes.

5.1 RQ1: is the shape-aware controller effective?
To provide an answer to the first research question, i.e., to test the
effectiveness of the proposed controller, we started by assessing
the performance of its building blocks. Namely, we tested whether
the self-classifying NCA is accurate on VSR shapes, and if all the
considered shapes are suitable for evolving a controller for the task
of locomotion.

Concerning the NCA component, we followed the training pro-
cedure described in Section 4.1. We considered 4 sets of shapes
of increasing sizes (|𝐶1 | = 3, |𝐶2 | = 9, |𝐶3 | = 15, |𝐶4 | = 39, see
Table 1 for the shapes in each set) to evaluate the dependency of
the performance of the NCA w.r.t. the shapes involved, i.e., w.r.t.
the difficulty of the classification task. For each set we trained an
NCA for self-classification for 1500 iterations with SGD and the
Adam optimizer with default parameters, employing TensorFlow as
software tool [1]. We repeated the training 10 independent times for
each configuration, to ensure results were not just a result of ran-
domness. Regarding the NCA parameters, we fixed 𝑛𝑐,0 = 𝑛𝑐,1 = 80
for all the NCA, while we set 𝑛𝑐,2 = |𝐶𝑖 | + 20, where |𝐶𝑖 | is the
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Figure 2: Accuracy during training for different shapes sets
(median and inter-quartile range across 10 trainings) .

size of the considered set. Moreover, we computed the loss LNCA
considering ℎ𝑖 = 25 and ℎ𝑓 = 50.

We display a summary of the NCA training results in Figure 2.
For each set, we report the progression of the accuracy (averaged
across shapes, cells, and time) achieved at training time along it-
erations, in terms of median and inter-quartile range across the
10 trainings. From the plots we can note a clear convergence to-
wards the perfect accuracy (i.e., 1) for all sets, with different slopes
dictated by the difficulty of each set. Hence, we can conclude that
the NCA is indeed capable of performing self-classification on the
considered VSR shapes. An interesting remark can be made about
set 2, which displays slower convergence w.r.t. the larger set 3. We
speculate this derives from the great shape size variability within
set 2, which makes the classification task harder regardless of the
more contained size of the set.

After testing the capability of the NCA, wemoved on to assessing
the possibility of implementing a library of controllers optimized
for each of the considered shapes. To this end, we followed the
evolutionary optimization procedure described in Section 4.2 for
each of the shapes of Table 1. We recall that we built each set of
shapes that origins the library by hand, to cover a diverse enough
variety of shapes, although it is also possible to frame the shapes
choice as an optimization problem itself, as in [17, 29]. Concerning
the controller, we used a distributed neural controller, consisting
of the same NN𝜽 in each voxel. We optimized 𝜽 𝑖 for each shape
𝑐𝑖 for the task of locomotion on a flat terrain, i.e., maximizing 𝑣𝑥 ,
considering a simulation of 30 s, fromwhich we discarded the initial
transient of 5 s. We relied on the ES presented in Algorithm 1, with
𝜎 = 0.35, 𝑛pop = 48, and 𝑛gen = 208 (corresponding to ≈ 10 000
total fitness evaluations). For each of the considered shapes we
repeated the evolutionary optimization 5 independent times, thus
achieving 5 optimized controller libraries. As software tools we
utilized 2D-VSR-Sim [16] for the VSR simulation and JGEA [18] for
the evolutionary optimization.

The controller optimization results are summarized in Table 1.
For each shape we report the median and the standard deviation
across the 5 optimizations of the velocity of the best individual at
the end of evolution 𝑣★𝑥 , and its trend along evolution in the last
column. Moreover, we quantify how easy and fast it is to optimize
a shape with 𝑔80, that is the amount of generations needed to reach
80 % of the performance achieved at the end of evolution. From the
table we clearly see that some shapes are more effective than others
for the locomotion task, i.e., some achieve higher 𝑣★𝑥 , and we also
notice that it takes different efforts, i.e., different 𝑔80, to optimize

Figure 3: Frames of VSRs with the shape-aware controller
successfully performing locomotion.

some of them. However, we observe that for all shapes there exists a
controller NN𝜽 which leads them to achieve an effective locomotion
gait. We also verified this by visually inspecting the videos1 of the
whole optimized library of shape-controller pairs for one of the
independent optimizations—a sample of behaviors is shown in
Figure 3.

Having tested the effectiveness of both building blocks, we pro-
ceeded to evaluating their combination, following the methodology
described in Section 4.3. Namely, for each shape in each set, we
proceeded as follows: (1) we assembled a VSR in the given shape,
(2) we let the self-classifying NCA update for 𝑛𝑢 = 40 steps, and
(3) we used the outcome of the shape classification to select the
controller for the VSR. We set 𝑛𝑢 = 40 as a reasonable value in-
between ℎ𝑖 = 25 and ℎ𝑓 = 50, considered at training time. We
repeated the evaluation for each set, for each of the 10 trained NCA,
and for each of the 5 controller libraries. In addition, we repeated
the procedure introducing the majority voting phase prior to the
controller selection, as seen in Section 4.3.

As evaluation metrics we considered the NCA classification accu-
racy, defined as the fraction of correctly classified voxels in the VSR,
and the relative performance loss 𝜌 = 1 − 𝑣

𝑣★𝑥
, 𝑣 being the velocity

achieved in a new simulation with the NCA-selected controller. We
report the results obtained for all the sets in Table 2, in terms of me-
dian and standard deviation. The most outstanding trait of the table
is that the results achieved in terms of median are always “perfect”,
meaning that the majority of tests led to an ideal result. However,
the non-zero standard deviation for sets 𝐶2 and 𝐶4 hints that in
some cases mis-classifications occurred, which led to non-negligible
performance losses. Another interesting observation regards the
effects of majority voting: looking at sets 𝐶2 and 𝐶4 we see that it
often leads to a decrease in the standard deviation, meaning that it
can help to cope with minor classification errors. Therefore, we can
conclude that such additional layer of complexity could be worth it
to deal with more complex scenarios, while it becomes practically
useless is easier conditions.

1available at https://drive.google.com/drive/folders/12t2Wt07PzQCRFTkeEwCi4rK_
71F9S650?usp=sharing

https://drive.google.com/drive/folders/12t2Wt07PzQCRFTkeEwCi4rK_71F9S650?usp=sharing
https://drive.google.com/drive/folders/12t2Wt07PzQCRFTkeEwCi4rK_71F9S650?usp=sharing
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W/o majority voting W/ majority voting
Set Accuracy 𝜌 Accuracy 𝜌

𝐶1 1.00 0.00 1.00 0.00
𝐶2 1.00±0.21 0.00±0.21 1.00±0.23 0.00±0.18
𝐶3 1.00 0.00 1.00 0.00
𝐶4 1.00±0.17 0.00±0.20 1.00±0.17 0.00±0.13

Table 2: Median and standard deviation of accuracy and rela-
tive performance loss 𝜌 (with and without majority voting)
after 40 developmental steps of the NCA for each set.
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Figure 4: Accuracy during training for different shapes sets
using a smaller CNN to govern the NCA (median and inter-
quartile range across 10 trainings).

5.2 RQ2: how do the NCA parameters affect the
controller effectiveness?

To evaluate the impact of the NCA parameters on the overall effec-
tiveness of the shape-aware controller, we reproduced the experi-
mental evaluation described in Section 5.1 with different parameters.
Namely, we performed a two-fold study, to assess the impact of the
size of the CNN in the NCA, and the robustness w.r.t. the amount
of update steps 𝑛𝑢 employed for the self-classification.

5.2.1 CNN size. First, we aimed at assessing the impact of a smaller
NCA architecture, as in physical implementations it might be de-
sirable to shrink the CNN while retaining good performance [23].
To test the feasibility of this idea, we repeated the experimental
procedure of Section 5.1 with a drastically reduced CNN within
the NCA. Namely, we set 𝑛𝑐,0 = 𝑛𝑐,1 = 30 and 𝑛𝑐,2 = |𝐶𝑖 | + 10, |𝐶𝑖 |
being the size of the considered set.

We report the accuracy results achieved at training time in Fig-
ure 4 for all the considered sets. Comparing them with those of
Figure 2 we clearly notice that, although the trends are similar, the
size of the CNN plays a key role in making the NCA capable of
performing classification. In fact, here we notice good convergence
only for the smaller sets, whereas for set 𝐶4 the accuracy remains
low, i.e., the NCA is not able to properly classify all the shapes.

The inaccuracies observed at training time also reflect in a non-
optimal behavior when the full controller is deployed, as we can
see in Table 3. Although for sets 𝐶1 to 𝐶3 we still observe a per-
fect behavior in terms of median, we notice a clear increase in
the standard deviation w.r.t. Table 2. Moreover, for set 𝐶3 we high-
light a neat performance drop, if no majority voting is employed.
Summarizing, a smaller CNN can suffice for easier tasks, i.e., when

W/o majority voting W/ majority voting
Set Accuracy 𝜌 Accuracy 𝜌

𝐶1 1.00 0.00 1.00 0.00
𝐶2 1.00±0.36 0.00±0.37 1.00±0.38 0.00±0.29
𝐶3 1.00±0.16 0.00±0.27 1.00±0.12 0.00±0.11
𝐶4 0.67±0.44 0.55±0.46 1.00±0.50 0.00±0.44

Table 3: Median and standard deviation of accuracy and rela-
tive performance loss 𝜌 (with and without majority voting)
after 40 developmental steps using a smaller CNN to govern
the NCA.

few shapes are employed, but it struggles when the classification
becomes harder. In such cases, the majority voting scheme can be
crucial for retaining a good overall controller performance.

5.2.2 NCA update steps. Another interesting aspect to evaluate re-
gardswhether the shape-aware controller is robust w.r.t. the amount
of update steps performed by the NCA for the self-classification
phase. To assess this, we took the NCA trained in Section 5.1, and
we repeated the controller deployment phase with different values
of 𝑛𝑢 = 1, . . . , 100.

We report the accuracy and the relative performance loss 𝜌
(median and inter-quartile range) obtained for different sets, also
with majority voting, for each value of 𝑛𝑢 (on the 𝑥-axis) in Figure 5.
Focusing on the results achieved with the mere NCA classification
we clearly see a phase with perfect accuracy/zero 𝜌 ranging from
𝑛𝑢 ≈ 10 to 𝑛𝑢 ≈ 60, preceded and followed by poorer controller
performance. Concerning the initial phase, it naturally derives by
the fact that it takes some time and some exchange of information
between cells to achieve the correct classification. In fact, smaller
sets display a shorter transient and perform well with fewer steps.
For the final phase, instead, it could be a consequence of how the
loss LNCA is computed, as it takes into consideration only what
happens, i.e., the average accuracy, between ℎ𝑖 = 25 and ℎ𝑓 = 50.
Hence, we are not explicitly promoting permanent convergence
when training the NCA, which results in a loss of performance after
the considered interval. However, if we observe the outcome with
the addition of the majority voting phase, we once again notice how
it can be useful for overcoming more difficult scenarios, making up
for minor mis-classifications.

The obtained results suggest that using the NCA for continuous
online classification would not be possible without additional mea-
sures. In fact, although such a classification would be desirable for
spotting and reacting to unexpected damages, e.g., loss of voxels
during the accomplishment of a task, it appears not to be feasible
due to the NCA instability at the increase of 𝑛𝑢 . However, some
simple precautions as periodic state reset or a damage detection
signal could suffice for making the shape-aware controller viable
for dealing with online damages. We leave the investigation of these
aspects for future work.

5.3 RQ3: can the shape-aware controller deal
with unforeseen inaccuracies?

In order to assess the shape-aware controller performance when
reacting to unforeseen assembly inaccuracies, we performed an
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Figure 5: Accuracy and relative performance loss 𝜌 (median
and inter-quartile range) of the shape-aware controller with
varying amounts of NCA update steps 𝑛𝑢 (on the 𝑥-axis) for
different sets.

experimental study similar to that of Section 5.1, changing the set
of shapes of evaluation w.r.t. that employed for training the NCA
classifier. Namely, we employed set𝐶1 and𝐶2 for the training, while
we relied on the larger sets 𝐶3 and 𝐶4, respectively, for the evalu-
ation. Being interested in measuring the results only for unseen
shapes, we removed the common shapes from the larger sets (i.e.,
we actually used set𝐶3 \𝐶1 and𝐶4 \𝐶2). In this way, we purposely
considered shapes differing from the original ones for at most one
missing voxel as those constitute an ideal test-bed for simulating
small assembly mistakes or damages. For the controller evaluation
we followed the same procedure described in Section 5.1, where
we let the NCA update for 𝑛𝑢 = 40 steps, and used the classifica-
tion outcome to deploy the controller of each voxel. As before, we
also experimented with the addition of a majority voting phase
in-between classification and deployment.

As performance index we only considered the relative perfor-
mance loss 𝜌 , as it is not possible to define the accuracy (the shape
is not among the ones known by the NCA). As a baseline, we also
tested the performance of the VSR with all the voxels equipped with
the controller relative to the closest shape among those belonging
to the training set of the NCA. We report the distribution of 𝜌 for
the three aforementioned cases in the box plots of Figure 6, dividing
them by the sets considered for the NCA training and assessment.
Namely, on the left we display the results for the NCA trained on𝐶1
and assessed on 𝐶3 \𝐶1, whereas on the right we show the results
relative to the training on 𝐶2 and the assessment on 𝐶4 \𝐶2.

An interesting and surprising trait of the displayed box plots
is that they extend above 1 and below 0. The first is caused by
negative velocities during assessment, meaning that the VSR is
moving in the wrong direction, resulting from a severely scrambled
controller. The negative values of 𝜌 , instead, are a consequence
of slight performance improvements caused by a new favorable
arrangement of controllers within voxels, also seen in [19].

Moving on to a comparative analysis between the box plots, we
note that the baseline is usually the best performing one, display-
ing a generally lower 𝜌 in comparison to the others. To further
investigate on this, we performed a Mann-Whitney U test with
the null hypothesis of distributions equality between each pair of
box plots (the baseline, the one with the NCA classifier only, and

0

1

𝜌

𝐶3 \𝐶1 𝐶4 \𝐶2

W/o maj. voting W/ maj. voting Closest shape

Figure 6: Distributions of the relative performance loss 𝜌
achieved by the shape-aware controller deployed on unseen
shapes.We also report the 𝜌 obtained using the NN controller
relative to the shape closest to the considered one (in terms
of edit distance) in each voxel, as a baseline.

the one with majority voting). Considering a significance level of
𝛼 = 0.05, the only pair displaying a non-significant difference is for
set 𝐶3 \𝐶1 between the baseline and the controller with majority
voting. Hence, we can conclude that the shape-aware controller
has fairly limited generalization abilities for out-of-sample shapes.
However, given the notable performance observed on even larger
sets in Section 5.1, we can overcome this limitation by including a
wide variety of shapes at training time, possibly encompassing all
the damaged shapes versions, to make the NCA able to deal with
those as well. In other words, it appears convenient to evolve, i.e.,
optimize, a larger library of controllers [6, 7], as this only increases
the computational effort at pre-training time, while notably en-
hancing the deployed controller performance, possibly also when
reacting to online damages [2].

6 CONCLUSION
In this work, we proposed a shape-aware neural controller for mod-
ular robots, which can be embedded within individual modules
and only requires communication with direct neighbors to func-
tion. Here shape-aware refers to each module controller’s ability to
automatically infer the overall shape of the agent.

To validate the approach, we conducted a thorough experimental
evaluation on a locomotion task with simulated voxel-based soft
robots, a class of modular robots composed of elastic cubes. Our
results demonstrate the effectiveness of the shape-aware controller,
and confirm it can effectively rely on self-classification to select the
proper parameters to use among a pre-optimized library, obtained
with evolutionary computation. Moreover, we show its applicability
to different scenarios, such as dealing with assembly inaccuracies
or online damages.

We believe our approach paves the way for an autonomous
robot ecosystem, where automatic assembly can be followed by
self-discovery and autonomous controller selection and deploy-
ment. Although we conducted this study in simulation only, the
completely decentralized approach should make it amendable for
real-world transfer. Thus, in the future we aim to explore the appli-
cability of the proposed approach for physical modular robots.
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