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Abstract—While Monte Carlo tree search (MCTS) methods
have shown promise in a variety of different board games,
more complex video games still present significant challenges.
Recently, several modifications to the core MCTS algorithm
have been proposed with the hope to increase its effectiveness
on arcade-style video games. This paper investigates of how well
these modifications perform in general video game playing using
the general video game AI (GVG-AI) framework and introduces
anew MCTS modification called UCT reverse penalty that penal-
izes the MCTS controller for exploring recently visited children.
The results of our experiments show that a combination of two
MCTS modifications can improve the performance of the vanilla
MCTS controller, but the effectiveness of the modifications
highly depends on the particular game being played.

I. INTRODUCTION

Game-based AI competitions have become popular in
benchmarking Al algorithms [22]. However, typical Al com-
petitions focus only on one type of game and not on the
ability to play a variety of different games well (i.e. the
controllers only work on one particular game / game type
/ problem). In this context, an important question is if it
is possible to create controllers that can play a variety of
different types of games with little or no retraining for each
game.

The general video game AI (GVG-AI) competition ex-
plores this challenge. To enter the competition, a controller
has to be implemented in the GVG-AI framework (avail-
able at: http://www.gvgai.net/). The framework contains two
sets with ten different games in each set. The games are
replicas of popular arcade games that have different winning
conditions, scoring mechanisms, sprites and player actions.
While playing a game the framework gives the controller
a time limit of 40 milliseconds to return the next action.
If this limit is exceeded, the controller will be disqualified.
The competition and framework is designed by a group of
researchers at University of Essex, New York University and
Google DeepMind [18], [17].

The Monte Carlo tree search (MCTS) algorithm, performs
well in many types of games [4], [9], [10], [8]. MCTS
was first applied successfully to the Asian board game Go,
for which it rapidly redefined the state of the art for the
game. Whereas previous controllers had been comparable
to human beginners, MCTS-based controllers were soon
comparable to intermediate human players [10]. MCTS is
particularly strong in games with relatively high branching

factors and games in which it is hard to develop a reli-
able state value estimation function. Therefore, MCTS-based
agents are generally the winners in the annual general game
playing competition, which is focused on board games and
similar discrete, turn-based perfect-information games [7],
[1].

Beyond board games, MCTS has also been applied to
arcade games and similar video games. In particular, the
algorithm has performed relatively well in Ms. Pac-Man [13]
and Super Mario Bros [8], though not better than the state of
the art. In the general video game playing competition, the
best agents are generally based on MCTS or some variation
thereof [16], [17]. However, this is not to say that these
agents perform very well — in fact, they perform poorly on
most games. One could note that arcade-like video games
present a rather different set of challenges to most board
games, one of the key differences being that random play
often does not lead to any termination condition.

The canonical form of MCTS was invented in 2006, and
since then many modifications have been devised that per-
form more or less well on certain types of problems. Certain
modifications, such as rapid action value estimation (RAVE)
perform very well on games such as Go [6] but show limited
generalization to other game types. The work on Super Mario
Bros mentioned above introduced several modifications to
the MCTS algorithm that markedly improved performance
on that particular game [8]. However, an important open
question is if those modifications would help in other arcade-
like video games as well?

The goal of this paper is to investigate how well certain
previously proposed modifications to the MCTS algorithm
perform in general video game playing. The “vanilla MCTS”
of the GVG-AI competition framework is our basis to
test different modifications to the algorithm. In addition to
comparing existing MCTS modifications, this paper presents
a new modification called reversal penalty, which penalizes
the MCTS controller for exploring recently visited positions.
Given that the games provided with the GVG-AI framework
differ along a number of design dimensions, we expect this
evaluation to give a better picture of the capabilities of our
new MCTS variants than any one game could do.

The paper is structured as follows: Section 2 describes
related work in GVG, MCTS and use of MCTS. Section 3
describes the GVG-AI framework and competition and how



we used it. Section 4 explains the MCTS algorithm, followed
by the tested MCTS modifications in Section 5. Section 6
details the experimental work and finally Section 7 discuss
the results and describes future work.

II. RELATED WORK
A. General Video Game Playing

The AAAI general game playing competition by Stanford
Logic Group of Stanford University [7] is one of the oldest
and most well-known general game playing frameworks. The
controllers submitted for this competition receive descrip-
tions of games at runtime, and use the information to play
these games effectively. The controllers do not know the type
or rules of the game beforehand. In all recent iterations of
the competition, different variants of the MCTS algorithm
can be found among the winners of the competition.

The general video game playing competition is a recent
addition to the set of game competitions [18], [17]. Like the
Stanford GGP competition, submitted controllers are scored
on multiple unseen games. However, unlike the Stanford
GGP competition the games are arcade games inspired
by 1980’s video games, and the controllers are not given
descriptions of the games. They are however given forward
models of the games. The competition was first run in 2014,
and the sample MCTS algorithm reached third place. In first
and second place were MCTS-like controllers, i.e. controllers
based on the general idea of stochastic tree search but
implemented differently. The sample MCTS algorithm is a
vanilla implementation and is described in Browne et al. [2].
The iterations of the algorithm rarely reach a terminal state
due to the time constraints in the framework. The algorithm
evaluates the states by giving a high reward for a won game
and a negative reward for a lost game. If the game was neither
won or lost, the reward is the game’s score. The play-out
depth of the algorithm is ten moves.

B. MCTS Improvements

A number of methods for improving the performance of
MCTS on particular games have been suggested since the
invention of the algorithm [19], [2]. A survey of key MCTS
modifications can be found in Browne et al. [2]. Since
the MCTS algorithm has been used in a wide collection
of games, this paper investigates how the different MCTS
modifications perform in general video game playing.

Some of these strategies to improve the performance of
MCTS were deployed by Jacobsen et al. [8] to play Super
Mario Bros. The authors created a vanilla MCTS controller
for a Mario AI competition, which they augmented with
additional features. To reduce cowardliness of the controller
they increased the weight for the largest reward. Additionally,
macro actions [15], [8] were employed to make the search
go further without increasing the number of iterations. Partial
expansion is another technique to achieve a similar effect as
macro actions. These modifications resulted in a very good
performing controller for the Mario game. It performed better
than Robin Baumgarten’s A* version in noisy situations and
performed almost as well in normal playthroughs.

Pepels et al. [13] implemented five different strategies to
improve existing MCTS controllers: A variable depth tree,
playout strategies for the ghost-team and Pac-Man, long-term
goals in scoring, endgame tactics and a last-good-reply policy
for memorizing rewarding moves. The authors achieved an
average performance gain of 40962 points, compared to the
CIG’11 Pac-Man controller.

Chaslot et al. [3] proposed two strategies to enhance
MCTS: Progressive bias to direct the search according to
possibly time-expensive heuristic knowledge and progressive
unpruning, which reduces the branching factor by removing
children nodes with low heuristic value. By implementing
these techniques in their Go program, it performed signifi-
cantly better.

An interesting and well-performing submission to the
general game playing competition is Ary, developed by
Meéhat et al. [11]. This controller implements parallelization
of MCTS, in particular a “root parallel” algorithm. The idea
is to perform individual Monte Carlo tree searches in parallel
on different CPUs. When the framework asks for a move, a
master component chooses the best action among the best
actions suggested by the different trees.

Perez et al. [16] used the GVG-AI framework and pro-
posed augmentations to deal with some of the shortcomings
of the sample MCTS controller. MCTS was provided with
a knowledge base to bias the simulations to maximize
knowledge gain. The authors use fast evolutionary MCTS,
in which every roll-out evaluates a single individual of the
evolutionary algorithm and provides the reward calculated at
the end of the roll-out as a fitness value. They also defined
a score function that uses a concept knowledge base with
two factors: curiosity and experience. The new controller
was better in almost every game compared to the sample
MCTS controller. However, the algorithm still struggled in
some cases, for example in games in which the direction of
a collision matters.

This paper uses the GVG-AI framework and builds on the
sample MCTS controller. The next section will describe the
GVG-AI framework in more detail.

III. GVG-AI COMPETITION & FRAMEWORK

The GVG-AI competition tries to encourage the creation
of AI for general video game playing. The controller sub-
mitted to the competition webpage is tested in a series of
unknown games, thereby limiting the possibility of applying
any specific domain knowledge. The competition is held as
part of several international conferences since 2014. Part
of the GVG-AI competition is the video game description
language (VGDL) [5], [21] that describes games in a very
concise manner; all of the games used in the competition are
encoded in this language. Examples are available from the
GVG-AI website.

Users participate in the competition by submitting Java
code defining an agent. At each discrete step of the game
simulation, the controller is supposed to provide an action
for the avatar. The controller has a limited time of 40ms to
respond with an action. In order for the controller to simulate



The CIG 2014 Training Game Set

Aliens(G_1)

In this game you control a ship at the bottom of the screen shooting aliens that come from space. You
better kill them all before they reach you! Based on Space Invaders.

Boulderdash(G_2)

Your objective here is to move your player through a cave, collecting diamonds, before finding the exit.
Beware of enemies that hide underground!

Butterflies(G_3)

You are a happy butterfly hunter. This is how you live your life, and you like it. So be careful, you don’t
want them to become extinct!

Chase(G_4) You like to chase goats. And kill them. However, they usually don’t like you to do it, so try not to get
caught doing that!
Frogs(G_5) Why did the frog cross the road? Because there is a river at the other side. What would you cross the river

as well? Because your home is there, and it’s cosy.

Missile Command(G_6)

Some missiles are being shot to cities in your country, you better destroy them before they reach them!

Portals(G_7)

You control an avatar that needs to find the exit of a maze, but moving around is not so simple. Find the
correct doors that take you to the exit!

Sokoban(G_8)

In this puzzle you must push the boxes in the maze to make them fall through some holes. Be sure you
push them properly!

Survive Zombies(G_9)

How long can you survive before you become their main course for dinner? Hint: zombies don’t like honey
(didn’t you know that?).

Zelda(G_10)

Get your way out of the dungeon infested with enemies. Remember to find the key that opens the door that
leads you to freedom!

TABLE T
THE GAME DESCRIPTIONS OF THE TRAINING SET FROM THE OFFICIAL COMPETITION SITE.
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Camel Race(G_1)

The avatar must get to the finish line before any other camel does.

Digdug(G_2)

The avatar must collect all gems and gold coins in the cave, digging its way through it. There are also enemies in the level
that kill the player on collision with him. Also, the player can shoot boulders by pressing USE two consecutive time steps,
which kill enemies.

Firestorms(G_3)

The avatar must find its way to the exit while avoiding the flames in the level, spawned by some portals from hell. The
avatar can collect water in its way. One unit of water saves the avatar from one hit of a flame, but the game will be lost if
flames touch the avatar and he has no water.

Infection(G_4)

The avatar can get infected by colliding with some bugs scattered around the level, or other animals that are infected
(orange). The goal is to infect all healthy animals (green). Blue sprites are medics that cure infected animals and the
avatar, but don’t worry, they can be killed with your mighty sword.

Firecaster(G_5)

The avatar must find its way to the exit by burning wooden boxes down. In order to be able to shoot, the avatar needs to
collect ammunition (mana) scattered around the level. Flames spread, being able to destroy more than one box, but they
can also hit the avatar. The avatar has health, that decreases when a flame touches him. If health goes down to 0, the
player loses.

Overload(G_6)

The avatar must reach the exit with a determined number of coins, but if the amount of collected coins is higher than a
(different) number, the avatar is trapped when traversing marsh and the game finishes. In that case, the avatar may kill
marsh sprites with the sword, if he collects it first.

Pacman(G_7)

The avatar must clear the maze by eating all pellets and power pills. There are ghosts that kill the player if he hasn’t eaten
a power pill when colliding (otherwise, the avatar kills the ghost). There are also fruit pieces that must be collected.

Seaquest(G_8)

The player controls a submarine that must avoid being killed by animals and rescue divers taking them to the surface.
Also, the submarine must return to the surface regularly to collect more oxygen, or the avatar would lose. Submarine
capacity is for 4 divers, and it can shoot torpedoes to the animals.

‘Whackamole(G_9)

The avatar must collect moles that pop out of holes. There is also a cat in the level doing the same. If the cat collides with
the player, this one loses the game.

Eggomania(G_10)

There is a chicken at the top of the level throwing eggs down. The avatar must move from left to right to avoid eggs
breaking on the floor. Only when the avatar has collected enough eggs, he can shoot at the chicken to win the game. If a
single egg is broken, the player loses the game.

TABLE IT
THE GAME DESCRIPTIONS OF THE EVALUATION SET FROM THE OFFICIAL COMPETITION SITE.

possible moves, the framework provides a forward model of
the game. The controller can use this to simulate the game
for as many ticks as the time limit allows.

For a more detailed explanation of the framework, see the
GVG-AI website or the competition report [17].

IV. MONTE CARLO TREE SEARCH

Monte Carlo tree search (MCTYS) is a statistical tree search
algorithm that often provides very good results in time
restricted situations. It constructs a search tree by doing
random playouts, using a forward model, and propagates
the results back up the tree. Each iteration of the algorithm
adds another node to the tree and can be divided into four

distinct parts. Figure 1 depicts these four steps. The first step
is the selection step, which selects the best leaf candidate for
further expansion of the tree. Starting from the root, the tree
is traversed downwards, until a leaf is reached. At each level
of the tree the best child node is chosen, based on the upper
confidence bound (UCB) formula (described below). When
a leaf is reached, and this leaf is not a terminal state of the
game, the tree is expanded with a single child node from
the action space of the game.

From the point of the newly expanded node, the game is
simulated using the forward model. The simulation consist
of doing random moves starting from this game state, until



a terminal state is reached. For complex or, as in our
case, time critical games, simulation until a terminal state
is often unfeasible. Instead the simulation can be limited
to only forward the game a certain amount of steps. After
the simulation is finished, the final game state reached is
evaluated and assigned a score. The score of the simulation
is backpropagated up through the parents of the tree, until
the root node is reached. Each node holds a total score, which
is the sum of all backpropagated scores, and a counter that
keeps track of the number of times the score was updated;
this counter is equal to the number of times the node was
visited.

A. Upper Confidence Bound - UCB

The UCB formula selects the best child node at each level
when traversing the tree. It is based on the bandit problem, in
which it selects the optimal arm to pull, in order to maximize
rewards. When used together with MCTS it is often referred
to as upper confidence bounds applied to trees, or UCT [2]:

_ 21
UCT = X +2C,, [ —2,
nj

where X ; is the average score of child j. n is the number
of times the parent node was visited and n; is the number
of times this particular child was visited. Cp is a constant
adjusting the value of the second term. At each level of the
the selection step, the child with the highest UCT value is
chosen.

B. Exploration vs. Exploitation

The two terms of the UCT formula can be described as
the balance between exploiting nodes with previously good
scores, and exploring nodes that rarely have been visited [2].

The first term of the equation, X ;, represents the exploita-
tion part. It increases as the backpropagated scores from its
child nodes increases.

The second term, 4/ 2”;—@, increases each time the parent
node has been visited, butja different child was chosen. The
constant C), simply adjust the contribution of the second
term.

C. Return Value

When the search is halted, the best child node of the root
is returned as a move to the game. The best child can either
be the node most visited, or the one with the highest average
value. This will often, but not always, be the same node [2].

D. Algorithm Characteristics

1) Anytime: One of the strengths of MCTS in a game with
very limited time per turn, is that the search can be halted
at anytime, and the currently best move can be returned.

Repeated X times

Selection + Expansion - Simulation —— Backpropagation

( Figure from Chaslot (2005)

Fig. 1. The main steps in the Monte-Carlo Tree Search.

2) Non-heuristic: MCTS only needs a set of legal moves
and terminal conditions to work. This trait is very important
in the GVG-AI setting, where the games are unknown to
the controller. If a playout from any given state has a high
probability of reaching a terminal state (win or lose), no state
evaluation function needs to be used; as this is not the case
in general for games in the GVG-ALI set, a state evaluator is
necessary.

3) Asymmetric: Compared to algorithms like minimax,
MCTS builds an asymmetric search tree. Instead of mapping
out the entire search space, it focuses efforts on previously
promising areas. This is crucial in time critical application.

V. MODIFICATIONS TO MCTS

Here we list the particular modifications to the basic
MCTS algorithm that we have investigated in this paper.

A. MixMax backups

Mixmax increases the risk-seeking behavior of the algo-
rithm. It modifies the exploitation part of UCT, by interpo-
lating between the average score and the maximum score:

@ - maxScore + (1 — Q) - X,

where @ is a value in the range [0,1]. A good path of
actions will not greatly affect the average score of a node,
if all other children lead to bad scores. By using mixmax
the good path contributes more to the average than the bad
ones, thereby reducing the defensiveness of the algorithm.
This modification was proposed in response to a problem
observed when applying MCTS to Super Mario Bros, where
Mario would act cowardly and e.g. never initiate a jump over
a gap as most possible paths would involve falling into the
gap. Mixmax backups made Mario considerably bolder in
the previously cited work [8].

For the experiments with mixmax in this paper, the Q value
was set to 0.1. The Q value was determined through prior
experimentation.

B. Macro Actions

As stated previously, each action has to be decided upon
in a very short time-span. This requirement can often lead to
search tree with a limited depth, and as such only the nearest
states are taken into consideration when deciding on the
chosen action. Macro actions enable a deeper search, at the
cost of precision. Powley et al. have previously shown that



this is an acceptable tradeoff in some continuous domains
[20].

Macro actions consists of modifying the expansion pro-
cess, such that each action is repeated a fixed number of
times before a child node is created. That is, each branch
corresponds to a series of identical actions. This process
builds a tree that reaches further into the search space, but
using coarser paths.

C. Partial Expansion

A high branching factor relative to the time limit of
the controller results in very limited depth and visits to
previously promising paths. Even though a child might have
resulted in a high reward, it will not be considered again,
before all other children have been expanded at least once.
The partial expansion modification allows the algorithm to
consider “grandchildren” (and any further descendants) of a
node before all children of that node have been explored.
This allows for a deeper search at the cost of exploration.
In the Mario study, Partial Expansion was useful combined
with other modifications [8].

D. Reversal Penalty

A new MCTS modification introduced in this paper is
UCT reverse penalty. A problem with the standard MCTS
controller is that it would often just go back and forth
between a few adjacent tiles. This oscillation is most likely
due to the fact that only a small amount of playouts are
performed each time MCTS is run, and therefore a single,
or a few high scoring random playouts completely dominate
the outcome. Additionally, when there are no nearby actions
that result in a score increase, an action is chosen at random,
which often also leads to behaviors that move back and
forth. Instead, the goal of UCT reverse penalty is to create
a controller that explores more of the given map, without
increasing the search depth. To achieve this the algorithm
adds a slight penalty to the UCT value of children that lead
to a recently visited level tile (i.e. “physical position” in the
2D game world). However, the penalty has to be very small
so it does not interfere with the normal decisions of the
algorithm, but only affect situations in which the controller
is going back and forth between fields. This modification
is similar but not identical to exploration-promoting MCTS
modifications proposed in some recent work [12], [14].

In the current experiments, a list of the five most recently
visited positions is kept for every node, and the penalty is
0.05; when a node represents a state where the avatar position
is one of the five most recent, its UCT value is multiplied
by 0.95.

VI. EXPERIMENTS

The experiments in this paper are performed on the twenty
games presented in Table III and Table IV. In order to
make our results comparable with the controllers submitted
to the general video game playing competition, we use the
same software and scoring method. Each game is played
five times for each combination of MCTS modifications, one

playthrough per game level. This configuration follows the
standard setup for judging competition entries. Each level
has variations on the locations of sprites and in some games
variations on non-player character (NPC) behavior. There are
nine different combinations plus the vanilla MCTS controller,
which gives 900 games played in total. The experiments
were performed on the official competition site, by submit-
ting a controller following the competition guidelines. All
combinations derive from the four modifications explained in
the previous section: mixmax scores, macro actions, partial
expansion and UCT reverse penalty.

Two measures were applied when analyzing the experi-
ments: the number of victories and the score. The GVG-
Al competition weighs the number of victories higher than
the achieved score when ranking a controller; it is more
important to win the game rather than losing the game with a
high score. In both Table III and IV the scores are normalized
to values between zero and one.

VII. RESULTS

The top three modifications are UCT reverse penalty,
mixmax and partial expansion. According to the total amount
of wins, the MCTS controller with UCT reverse penalty is
the best performing controller. Thirty wins in the training
set and seventeen wins in the validation set. The number
of wins is slightly better than the number of wins of the
vanilla MCTS controller (27). However, the vanilla controller
receives a higher number of points (756), compared to the
number of points of the UCT reverse penalty modification
(601). Videos of the UCT reverse penalty controller can be
found here: http://bit.ly/1INIpF9.

Compared to the vanilla MCTS controller, the mixmax
modification alone does not increase the total amount of
wins or points. It does however improve the performance
in some games. In Missile Command the vanilla controller
scored higher than mixmax, but they have an equal chance of
winning. In the game Boulderdash, mixmax wins more often
but scores less points. By applying mixmax, the controller
wins games faster; points are scored whenever a diamond
spawns (time based) and when the controller collects dia-
monds. Therefore the faster the win, the less points.

Combining UCT reverse penalty and mixmax shows
promising results (Table IV). This controller was the highest
scoring and most winning controller looking at the total
values. It was the only controller winning any playthroughs
in the game Eggomania. The gameplay is characterized by
a controller that moves from side to side, whereas the other
controllers only move as far as they can “see”.

Interestingly, whenever a combination of modifications
contains macro actions, the controller performs badly, both
in terms of total score and total wins. As stated previously
macro actions enables a deeper search, at the cost of pre-
cision. This ability enables macro controllers to succeed
in games like Camelrace; as soon as it finds the goal the
agent will move to it. The other MCTS controllers fail in
Camelrace because they do not search the tree far enough.
However, the MCTS modifications with macro action lose



almost every other game type due to lack of precision. For
example, in Pac-Man-like games, it searches too deep, likely
moving past the maze junctions and never succeeding in
moving around properly. The macro action experiments were
done with a repeat value of three (i.e. using the same action
three times in a row). The repeat value has a profound effect
on how the controller performs, and is very domain specific.
The repeat value for Camelrace should be very high, but
in Pac-Man it should be very low for it to not miss any
junctions.

The game Camelrace is uncovering one major problem of
the MCTS controllers; the play-out depth is very limited,
which is a problem in all games with a bigger search space.
If the controller in Pac-man clears one of the corners of
the maze, it can get stuck in that corner, therefore never
reaching nodes that give points. The only controller that
wins any games in Pac-Man is UCT reverse penalty and
its combination with mixmax. UCT reverse penalty without
mixmax scores most points, but with mixmax it wins all
playthroughs and is ranked second in achieved score. The
depth cannot be increased due to the time-limitations in the
competition framework.

In the game Frogs, the avatar shows problematic behavior.
The avatar has to cross the road quickly without getting hit by
the trucks in the lanes. Most roll-outs are unable to achieve
this. The most common behavior observed is a controller
that moves in parallel to the lanes and is never crossing
it. No controllers are able to win all the playthroughs, but
controllers using mixmax scores or UCT reverse penalty
sometimes win.

When comparing our results with the ranking on the
official competition site, our controller is performing better
on the validation set. The sampleMCTS scores 37 points and
wins 16 of 50, where our controllers scores 75 points and
wins 20 of 50. This places the controller on seventh place,
four places higher than sampleMCTS. In the training set our
controller scores less points, but wins three games more than
the sampleMCTS. This places our controller on tenth place,
three places lower than sampleMCTS.

VIII. DI1SCUSSION AND FUTURE WORK

According to our experiments the [UCT reverse penalty,
mixmax] combination was the one that performed best
overall, and the only one that convincingly beat Vanilla
MCTS on the validation set. It should be noted that while
we used the official scoring mechanism of the competition,
higher number of playthroughs might have been preferable
given the variability between games. Several games contains
NPCs, and those have very different behaviors. Additionally,
their behaviors are not only different per game, but also per
playthrough. In games like Pac-Man (G_7 in the validation
set), the enemy ghosts behave very stochastically. Because
of this stochastic behavior, the results of five playthroughs
will vary even using the same controller.

The presented results show that each MCTS modification
only affects subsets of games, and often different subsets.

One could argue that the sampleMCTS controller in the
framework is rather well-balanced.

One could also argue that the fact that no single MCTS
modification provides an advantage in all games shows that
the set of benchmark games in GVG-AI provides a rich
set of complementary challenges, and thus actually is a test
of “general intelligence” to a greater degree than existing
video game-based AI competitions. It remains to be seen
whether any modification to MCTS would allow it to perform
better across these games; if it does, it would be a genuine
improvement across a rather large set of problems.

IX. CONCLUSION

This paper investigated the performance of several MCTS
modifications on the games used in the General Video Game
Playing Competition. One of these modifications is reported
for the first time in this paper: UCT reverse penalty, which
penalizes the MCTS controller for exploring recently visited
children. While some modifications increased performance
on some subset of games, it seems that no one MCTS vari-
ation performs best in all games; every game has particular
features that are best dealt with by different MCTS variations.
This confirms the generality of Al challenge offered by the
GVG-AI framework.
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